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Abstract

As multi-core computer architectures are becoming mainstream, it is widely believed that one of

the biggest challenges facing computer scientists today is learning how to exploit the parallelism

that such architectures can offer. This work deals with efficient synchronization and data exchange

among threads.

The first part of this thesis addresses theoretical and practical issues of transactional memory

(TM), a new synchronization abstraction, which allows threads to bundle multiple operations on

memory objects into transactions. Similarly to database transactions, TM transactions are executed

atomically: either all of the transaction’s operations appear to take effect simultaneously (in this

case, we say that the transaction commits), or none of transaction’s operations are seen (in this

case, we say that transaction aborts).

Existing TMs may abort many transactions that could, in fact, commit without violating cor-

rectness. We call such unnecessary aborts spurious aborts. We classify what kinds of spurious

aborts can be eliminated, and which cannot. We further study what kinds of spurious aborts can be

avoided efficiently. Specifically, we show that some unnecessary aborts cannot be avoided, and that

there is an inherent tradeoff between the overhead of a TM and the extent to which it reduces the

number of spurious aborts. We also present a polynomial-time sample TM algorithm that avoids

certain kinds of spurious aborts and analyze its properties and performance.

An effective way to reduce the number of aborts in transactional memory is to keep multiple

versions of transactional objects. We therefore study inherent properties of STMs that use multiple

versions to guarantee successful commits of all read-only transactions. We first show that these

STMs cannot be disjoint-access parallel. We then consider the problem of garbage collecting old

object versions, and show that no STM can be optimal in the number of previous versions kept.

Moreover, we show that precise garbage collecting of useless versions is impossible in STMs

1



implemented with invisible reads. As an example, we present a theoretical sample STM algorithm

that uses visible reads and efficiently removes object versions once they become useless.

We refer to the practical implications of excessive aborts and multi-versioning by develop-

ing Selective Multi-Versioning (SMV), a multi-versioned STM that reduces the number of forceful

aborts, especially those of long read-only transactions. SMV efficiently deals with old versions

while still allowing invisible read-only transactions by relying on automatic garbage collection.

It achieves ×7 throughput improvement over a single-version STM and more than a two-fold im-

provement over an STM keeping a constant number of versions per object. Moreover, we show that

the memory consumption of algorithms keeping a constant number of versions per object might

grow exponentially, while SMV operates successfully even in systems with stringent memory con-

straints.

Another important aspect of multi-core programming is the problem of efficient data exchange

among threads. We present a highly-scalable non-blocking producer-consumer task pool, designed

with a special emphasis on lightweight synchronization and data locality. The core building block

of our pool is SALSA, Scalable And Low Synchronization Algorithm for a single-consumer con-

tainer with task stealing support. Each consumer operates on its own SALSA container, stealing

tasks from other containers if necessary. We implement an elegant self-tuning policy for task inser-

tion, which does not push tasks to overloaded SALSA containers, thus decreasing the likelihood of

stealing. SALSA uses a novel approach for coordination among consumers, without strong atomic

operations or memory barriers in the fast path. It invokes only two CAS operations during a chunk

steal. Our evaluation demonstrates that a pool built using SALSA containers scales linearly with

the number of threads and significantly outperforms other FIFO and non-FIFO alternatives.
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Chapter 1

Introduction

During the past decade we could witness the crucial changes in the programming paradigms. While

the hardware architectures evolved by increasing the number of computing elements and their het-

erogeneity, the software world had to adapt to the new demands and to face the growing complexity

and the increasing parallelism. Development of scalable programs stopped being a niche of a few

professionals: thousands of “mere mortal programmers” are demanded to build highly efficient

parallel applications. This situation raises a need for devising new tools that help to deal with the

software development in the multi-core era.

Efficient synchronization. One of the main software challenges in the multi-core world is an

efficient synchronization of multithreaded programs. Conventional locking solutions introduce

a host of well-known problems: coarse-grained locks are not scalable, while fine-grained locks

are error-prone and hard to design. Transactional memory [48] has gained popularity as a new

synchronization abstraction for multithreaded systems, which has the potential to overcome the

pitfalls of traditional locking schemes. A transactional memory toolkit, or TM for short, allows

threads to bundle multiple operations on memory objects into one transaction. Similar to database

transactions [77], transactions are executed atomically: either all of the transaction’s operations

appear to take effect simultaneously (in this case, we say that the transaction commits), or none

of transaction’s operations are seen (in this case, we say that transaction aborts). The model and

correctness criterion of transactional memory are formally defined in Chapter 3.

Many existing TMs abort transactions that could commit without violating correctness of the
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program. Such unnecessary aborts might degrade the overall performance and decrease the pre-

dictability of the program. Chapter 4 aims to advance the theoretical understanding of TM aborts,

by studying what kinds of spurious aborts can or cannot be eliminated, and what kinds of spurious

aborts can or cannot be avoided efficiently. Specifically, we show that some unnecessary aborts

cannot be avoided, and that there is an inherent tradeoff between the overhead of a TM and the

extent to which it refrains from spurious aborts. We then demonstrate a polynomial-time sample

algorithm that avoids most unnecessary aborts and analyze its properties.

A necessary technique for reducing the number of aborts in STM is the usage of multiple

versions for transactional objects. Multi-versioning is especially useful for read-only transactions:

by keeping enough versions it is possible to assure that each read-only transaction successfully

commits by reading a consistent snapshot of the object it accesses. Chapter 5 focuses on the

theoretical properties of the algorithms that assure successful commit of read-only transactions.

We show that such algorithms cannot be disjoint-access parallel (DAP) and study their garbage

collection limitations. Amongst others, we claim that a simple approach of keeping a constant

number of versions for each object can cause an exponential memory growth, and then we prove

that no STM can be space optimal, i.e., no STM can ensure that it always maintains the minimum

number of object versions possible.

Chapter 6 presents a practical multi-versioned STM called Selective Multi-Versioning (SMV).

SMV is progressive and it ensures that each read-only transaction successfully commits. Our

STM keeps old object versions as long as they might be useful for a live read-only transaction

to read. It is able to do so while still allowing reading transactions to be invisible by relying

on automatic garbage collection to dispose of obsolete versions. SMV is most suitable for read-

dominated workloads, for which it performs better than previous solutions. It has an up to ×7

throughput improvement over a single-version STM and more than a two-fold improvement over

an STM keeping a constant number of versions per object, while operating successfully even in

systems with stringent memory constraints.

Efficient data exchange. An additional challenge posed by the emerging multi-core architec-

tures is data exchange among threads. A fundamental data structure for transferring tasks in a

parallel computation is a producer-consumer task pool. It is thus highly important to ensure that

such a pool does not become a scalability bottleneck when concurrently accessed by large number
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of threads.

Chapter 7 presents a scalable and highly-efficient task pool with lightweight synchronization-

free operations in the common case. The data allocation scheme of our pool is cache-friendly and

especially suitable for NUMA architectures. The core building block of the pool is SALSA, Scal-

able And Low Synchronization Algorithm for a single-consumer container with stealing support.

SALSA’s chunk-based stealing algorithm allows consume operations to be synchronization-free

when no stealing occurs, s.t. neither producers nor consumers invoke strong atomic operations in

the common case.

In many-core machines running multiple applications, system behavior becomes less pre-

dictable. Unexpected thread stalls may lead to an asymmetric load on consumers, which may in

turn lead to high stealing rates, hampering performance. SALSA employs a novel auto-balancing

mechanism that has producers insert tasks to less loaded consumers, and is thus robust to spurious

load fluctuations.

Our evaluation demonstrates that SALSA-based pools significantly outperform state-of-the-art

FIFO and non-FIFO alternatives.
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Chapter 2

Related Work

In Section 2.1 we review previous work on using multiple versions for avoiding aborts in STM.

Section 2.2 describes previous works on concurrent task pools.

2.1 Transactional Memory

The transactional memory programming paradigm was first introduced by Herlihy and Moss [48]

as a hardware proposal for combining sequences of concurrent operations into atomic transactions.

Since then, the idea has gained a lot of popularity and currently there exists multiple software [29,

69, 30, 22], hardware [27, 76, 56], and combined [75] TM implementations.

Multi-Versioning in TM. Most existing TM implementations, e.g., [47, 35, 32, 29] abort one

transaction whenever two overlapping transactions access the same object and at least one access

is a write. While easy to implement, this approach may lead to high abort rates, especially in

situations with long-running transactions and contended shared objects.

Historically, one of the commonly used methods for reducing the number of aborts was main-

taining multiple object versions. Multiversion concurrency control is a classical approach for pro-

viding concurrent access to the database in database management systems [16, 63]. Its idea is

to let a reading transaction obtain a consistent snapshot corresponding to an arbitrary point in

time (typically defined at the beginning of a transaction) – concurrent updates are isolated through

maintaining old versions rather than through a process of locks or mutexes.
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Multi-versioning technique was adopted by transactional memory algorithms as well. Aydonat

and Abdelrahman [11] proposed a solution based on a conflict serializability graph and multi-

versioned objects in order to reduce the number of unnecessary aborts. However, their solution still

induces spurious aborts, and does not characterize exactly when such aborts are avoided. Moreover,

they implement a stricter correctness criterion than opacity, which inherently requires more aborts.

Napper and Alvisi [61] described a serializable TM, based upon multi-versioned objects, which

used cycle detection in the precedence graph when validating the correctness criterion. The focus

of the paper was providing a lock-free solution. The authors did not refer to the aspect of spurious

aborts and, in fact, their TM did lead to spurious aborts due to a limitation on write operation,

which had to insert the new version after the latest one. In addition, Napper and Alvisi did not

refer to the problems of garbage collection and computational complexity of operations.

Formal notions for quantifying aborts. Gramoli et al. [40] referred to the problem of spurious

aborts and introduced the notion of commit-abort ratio, which is the ratio between the number of

committed transactions and the overall number of transactions in the run. Clearly, the commit-

abort ratio depends on the choice of the transaction that should be aborted in case of a conflict.

This decision is the prerogative of a contention manager [47]. Attiya et al. [6] showed a Ω(s) lower

bound for the competitive ratio for transactions’ makespan of any online deterministic contention

manager, where s is the number of shared objects. Their proof, however, does not apply to our

model, because it is based upon the assumption that whenever multiple transactions need exclusive

access to the same shared object, only one of these transactions may continue, while others should

be immediately aborted. In contrast, our model allows the TM to postpone the decision regarding

which transaction should be aborted till the commit, thus introducing additional knowledge and

improving the competitive ratio. In this paper, we show that no TM can obtain a commit-abort

ratio achieved by an optimal offline algorithm. This result suggests that it is not interesting to

compare (online) TMs by their commit-abort ratio, as the distance from the optimal result turns

out to be an artifact of the workload rather than the algorithm, and every TM has a workload on

which it performs poorly by this measure.

Input acceptance is also a notion presented by Gramoli et al. [40] — a TM accepts a certain

input pattern (sequence of operational invocations) if it commits all of its transactions. The au-

thors compared different TMs according to their input acceptance patterns. Guerraoui et al. [41]
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introduced the related notion of π-permissiveness. Informally, a TM satisfies π-permissiveness

for a correctness criterion π, if every history that does not violate π is accepted by the TM. Thus,

π-permissiveness can be seen as optimal input acceptance. However, Guerraoui et al. focused on

a model with single-version objects, and their correctness criterion was based upon conflict seri-

alizability, which is stronger than opacity and thus allows more aborts. They ruled out the idea

of ensuring permissiveness deterministically, and instead provide a randomized solution, which is

always correct and avoids spurious aborts with some positive probability. In contrast, we do not

limit the model to include single-version objects only, our correctness criterion is a generalization

of opacity [43], and we focus on deterministic guarantees. Although permissiveness does not try to

regulate the decisions of the contention manager, we show that no online TM may achieve permis-

siveness. Intuitively, this results from the freedom of choice for returning the object value during

the read operation — returning the wrong value might cause an abort in subsequent operations,

which is avoided by a clairvoyant (offline) algorithm.

Garbage collection. Any practical multi-versioned STM has to address the problem of removing

old object versions. Some earlier STMs, such as LSA [69], keep a fixed number of old object

versions. However, this approach leads to storing versions that are too old to be of use to any

transaction on the one hand, and to aborting transactions because they need older versions than

the ones stored on the other. In contrast, SMV keeps versions as long as they might be useful for

ongoing transactions, and makes them GCable by an automatic garbage collector as soon as they

are not. For infrequently updated objects, SMV typically keeps a single version.

Another multi-versioned STM, JVSTM [22], maintains a priority queue of all active transac-

tions, sorted by their start time. A cleanup thread waits until the transaction at the head of the

queue (the oldest transaction) is finished. When that happens, the cleanup process iterates over the

objects overwritten by the committed transaction and discards their previous versions. Thus, while

also keeping versions only as long as active transactions might read them, the GC mechanism of

JVSTM imposes an additional overhead for transaction startup and termination (including both

update and read-only transactions).

In a recent paper [34], the authors improved the GC mechanism of JVSTM by maintaining a

global list of per-thread transactional contexts, each keeping information about the latest needed

versions. A special cleanup thread iterates periodically over this list and thus finds the versions that
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can be discarded. This improvement, however, does not eliminate the need for a special cleanup

thread, which should run in addition to Java GC threads. JVSTM read-only transactions still need

to write to the global memory. In contrast, this thesis presents a simple algorithm with invisible

read-only transactions, which exploits the automatic GC available in languages with managed

memory.

Multi-versioning alternatives. Instead of multi-versioning, STMs can avoid aborts by reading

uncommitted values and then having the reader block until the writer commits [68], or by us-

ing read-write locks to block in case of concurrency [30, 9]. These approaches differ from the

algorithms proposed in this thesis, where transactions never block and may always progress in-

dependently. Moreover, reads, which are invisible in SMV, must be visible in these “blocking”

approaches. In addition, reading the values of uncommitted transactions might lead to consistency

violations during transactions.

Transactional mutex locks (TML) [25], have been shown to be very efficient for read-dominated

workloads due to their simplicity and low overhead. Unlike the multi-versioned algorithms pre-

sented in this thesis, TML do not allow concurrency between update transactions and thus do not

exploit the parallelism in read-write or write-dominated workloads.

Another technique for reducing the number of aborts is timestamp extension [69, 33]. This

mechanism requires maintaining a read-set and therefore is usually not used by read-only trans-

actions. Timestamp extension is applicable for SMV’s update transactions as well, hence this

improvement is orthogonal to the multi-versioning approach presented in this work.

Impossibility of disjoint-access parallelism. An important technique for optimizing STM per-

formance is disjoint-access parallelism. As described earlier, this means that transactions that do

not access the same objects should also not access the same memory locations, thereby avoiding

memory contention. Guerraoui and Kapalka [42] show that a single-versioned, obstruction-free

[47] STM cannot be strictly DAP. However, their proof does not apply in the multi-versioned set-

ting we consider.

Attiya et al. [10] show that there is no STM implementing DAP that uses invisible reads, in

which read-only transactions always terminate. In Section 5.4.1, we show that no responsive MV-

permissive STM can be DAP. As stated earlier, MV-permissiveness ensures all read-only transac-
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tions commit, and update transactions abort only when they conflict with other update transactions.

Thus, our results show that the requirement of invisible reads in [10] can be replaced by precluding

update transactions from aborting when they conflict with read-only transactions.

MV-permissiveness without responsiveness. Attiya and Hillel [8] present PermiSTM algo-

rithm, which provides MV-permissiveness but is not responsive — every read-only transaction

commits successfully; a transaction that tries to update the object, which has been read by an active

reader, is blocked until the termination of this reader. By forfeiting the responsiveness PermiSTM

succeeds to obtain the properties that cannot be achieved by UP-MV or any other responsive MV-

permissive algorithm — it uses a single version per object and it is disjoint-access parallel. This

way, UP-MV and PermiSTM demonstrate the degree of freedom that exists between the progress

conditions and implementation overhead.

2.2 Concurrent Task Pools

Concurrent task pool is a ubiquitous data structure that has a number of important applications in

multiprocessor computing, such as passing information among threads in a parallel computation.

SEDA [78], a highly concurrent web server, excessively uses task pools for building its execution

pipeline of requests. A key challenge is then to ensure that the pool does not become a bottleneck

when it is concurrently accessed by a large number of threads.

Pool implementations. Consumer-producer pools are often implemented as FIFO queues. A

widely used state-of-the-art FIFO queue is Micheal and Scott’s queue [58]. This queue is imple-

mented by a linked-list with head and tail references. The put operation adds a new node to the

list and then updates the tail reference. This is done by two CAS operations; one for adding the

new node and one for updating the tail reference. The get operation removes a node by moving

the head reference to point to the next node. This approach is not scalable under high contention

as only one contending operation may succeed.

Moir et al. [59] suggest using elimination to reduce the contention on the queue. Whereby put

and get operations can eliminate each other during the back-off after an unsuccessful operation.

However, due to the FIFO property, those eliminations can only be done when the queue is empty,
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making this approach useful only when the queue is close to empty.

Hoffman et al. [50] try to reduce the contention of the put operation by allowing concurrent

put operations to add tasks to the same “basket”. This is done by detecting contention on the

tail, which is indicated by a failed CAS operation when trying to update the tail. This reduces

the contention on the tail, but not on adding the node to the “basket”, which still requires a CAS

operation. Therefore, this approach, while more efficient than Micheal and Scott’s queue, is still

not scalable under high contention.

Gidenstam et al. [36] use a similar approach to Micheal and Scott’s, but, in order to improve

locality and decrease the contention on the head and tail, the data is stored in chunks, and the head

and tail points to a chunk rather than single nodes. This allows updating these references only once

per-chunk rather than on every operation. However, this solution still requires at least one CAS per

operation, rendering it non-scalable under high contention.

A number of previous works have recognized this limitation of FIFO queues, and observed that

strict FIFO order is seldom needed in multi-core systems.

Afek et al. [3] implemented a non-FIFO pool using diffraction trees with elimination (ED-

pools). An ED-pool is a tree of queues, which contains elimination arrays that reduce contention.

While ED-pools scale better than FIFO based solutions, they do not scale on multi-chip architec-

tures [12].

Basin et al. [14] suggest a wait-free task-pool that allows relaxing FIFO. This pool is more

scalable than previous solutions, but, since it still has some ordering (fairness) requirements, there

is contention among both producers and consumers.

The closest non-FIFO pool to the work presented in Chapter 7 is the Concurrent Bags of Sun-

dell et al. [74], which, like SALSA, uses per-producer chunk lists. This work is optimized for

the case that the same threads are both consumers and producers, and typically consume from

themselves, while SALSA improves the performance of such a task pool in NUMA environments

where producers and consumers are separate threads. Unlike our pool, the Concurrent Bags algo-

rithm uses strong atomic operations upon each consume. In addition, steals are performed in the

granularity of single tasks and not whole chunks as in SALSA. Overall, their throughput does not

scale linearly with the number of participating threads, as shown in [74] and in Section 7.4.

To the best of our knowledge, all previous solutions use strong atomic operations (like CAS),

at least in every consume operation. Moreover, most of them [3, 4, 14] do not partition the pool
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among processors, and therefore do not achieve good locality and cache-friendliness, which has

been shown to limit their scalability on NUMA systems [12].

Implementation techniques. Variations of techniques we employ were previously used in var-

ious contexts. Work stealing [18] is a standard way to reduce contention by using individual

per-consumer pools, where tasks may be stolen from one pool to another. We improve the effi-

ciency of stealing by transferring a chunk of tasks upon every steal operation. Hendler et al. [46]

have proposed stealing of multiple items by copying a range of tasks from one dequeue to another,

but this approach requires costly CAS operations on the fast-path and introduces non-negligible

overhead for item copying. In contrast, our approach of chunk-based stealing coincides with our

synchronization-free fast-path, and steals whole chunks in O(1) steps. Furthermore, our use of

page-size chunks allows for data migration in NUMA architectures to improve locality, as done

in [17].

The principle of keeping NUMA-local data structures was previously used by Dice et al. for

constructing scalable NUMA locks [28]. Similarly to their work, our algorithm’s data allocation

scheme is designed to reduce inter-chip communication.

The concept of a synchronization-free fast-path previously appeared in works on scheduling

queues, e.g., [5, 45]. However, these works assume that the same process is both the producer and

the consumer, and hence the synchronization-free fast-path is actually used only when a process

transfers data to itself. Moreover, those work assume a sequentially consistent shared-memory mul-

tiprocessor system, which requires insertion of some memory barrier instructions to the code when

implemented on machine providing a weaker memory model [7]. On the other hand, our pool is

synchronization-free even when tasks are transfered among multiple threads; our synchronization-

free fast-path is used also when multiple producers produce data for a single consumer. We do not

know of any other work that supports synchronization-free data transfer among different threads.

The idea of organizing data in chunks to preserve locality in dynamically-sized data structures

was previously used in [21, 36, 45, 74]. SALSA extends on the idea of chunk-based data structures

by using chunks also for efficient stealing.
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Chapter 3

Model and Notations

We consider a shared memory environment where execution threads communicate with each other

using shared memory, and each thread also has private memory which it alone can access. The

scheduler can suspend a thread, for an arbitrary duration of time, at any moment after termination

of a basic processor instruction (read, write, CAS). Threads cannot be suspended in the middle

of a basic instruction. In modern architectures read and write operations may be reordered unless

explicitly using a fence operation. However, in our model we assume sequential execution of

instruction per-thread. The reordering problems are solved by using implicit fences when using

CAS, or by the technique explained in 7.4.1.

Transactions. A transaction consists of a sequence of transactional operations, where each op-

eration is comprised of an invocation step and a subsequent matching response step, collectively

called transactional steps. The system contains a set of transactional objects. Each transactional

operations either accesses a transactional object, or tries to commit or abort the transaction. More

precisely, let T be a transaction, o be a transactional object, and v be a value. Then a transactional

operation is one of the following. (1) An invocation step start(T ), followed by response S, mean-

ing T is started. (2) An invocation step read(T , o), followed by a response step that either gives

the current value of o, or responds A, meaning that the transaction is aborted. (3) An invocation

write(T , o, v), followed by a response either acknowledging the write, or responding A. (4) An

invocation Abort(T ), followed by response A (abort operation). (5) An invocation Commit(T ),

followed either by response C, meaning T committed, or A.
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We say the read set, resp. write set of a transaction is the set of transactional objects read, resp.

written to by T . We say T is read-only if its write set is empty. An update transaction is any

transaction that is not read-only. We say two transactions conflict if they both access a common

transactional object, and at least one of the accesses is a write. We assume that the steps in a

transaction are not known ahead of time, but it is known a priori whether a transaction is a read-

only or update transaction. Detection of read-only behavior can be done at compile time or using

programmer annotations.

Transaction histories. A transactional historyH is a sequence of transactional steps, interleaved

in an arbitrary order (in the rest of the thesis we use the notion of run as a synonym to a transactional

history). A transaction is active inH if it is neither committed nor aborted, it is complete otherwise.

A transaction can perform operations as long as it is active. Each transaction has a unique identifier

(id). Retrying an aborted transaction is interpreted as creating a new transaction with a new id.

Two histories H1 and H2 are equivalent if they contain the same transactions and each transac-

tion Ti issues the same operations in the same order with the same responses in both. A history H

is complete if it does not contain active transactions. If history H is not complete, we may build

from it a complete history Complete(H) by adding an abort operation for every active transaction.

We define committed(H) to be the subsequence of H consisting of all the operations of all the

committed transactions in H .

The real-time order on transactions is as follows: if the first operation of transaction Ti is

issued after the last response of transaction Tj in H , then Tj precedes Ti in H , denoted Tj �H Ti.

Transactions Ti and Tj are concurrent if neither Tj �H Ti, nor Ti �H Tj . A transactional history S

is sequential if it has no concurrent transactions. S is legal if it respects the sequential specification

of each transactional object accessed in S. Transaction Ti is legal in S if the largest subsequence S ′

of S, such that for every transaction Tk ∈ S ′, either (1) k = i, or (2) Tk is committed and Tk ≺S Ti,
is a legal history.

Transactional memory. A transactional memory (TM) is an algorithm for running transactions.

We do not consider any kind of transactional nesting. Each transaction is run by a thread, and

each thread runs at most one transaction at a time. To run a transaction T , a thread runs each of

T ’s transactional operations, as follows. (1) Take as input an invocation step of T . (2) Perform
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a sequence of private and shared memory steps, which are determined by the input and the mem-

ory. (3) Return as output a response step to T . We write thr(T ) for the thread running T . A

transactional memory can forcefully abort transaction Tj as a result of invocation step of another

transaction Ti. In this case we say that Tj is aborted and the next operation invocation of Tj returns

A.

We call the memory objects accessed by the threads base objects. Note that these are concep-

tually distinct from the transactional objects accessed by the transactions. We also call the steps

performed by the threads base steps. We assume that all the base steps for running a transac-

tional step appear to execute atomically. The means by which such linearizability of transactional

steps is achieved lies beyond the focus of this thesis. In practice, it can be achieved using locks

(like the two-phase locking mechanism used in commit operations by TL2 [29]), or by lock-free

algorithms [35]. Due to the assumption of atomicity of transactional steps we consider only the

well-formed histories in which an invocation of transactional operation is followed by the corre-

sponding response.

We say that a TM is responsive if it guarantees that each operation invocation eventually gets

a response, even if all other threads do not invoke new transactional operations. This limits the

responsive TM’s behavior upon operation invocation, so that it may either return an operation re-

sponse, or abort a transaction, but cannot wait for other transactions to invoke new transactional

operations. Note that we do allow for a responsive TM to wait for concurrent transactional oper-

ations to complete, for example TL2 [29] is responsive in spite of the use of locks. One may say

that a responsive TM provides lock-freedom at the level of transactional operations.

A configuration of a TM consists of the states of the shared memory, private memory, and

threads. An execution of a TM is an alternating sequence of configurations and base steps, starting

with a configuration in which the memory and threads are all in their initial states. Two executions

are indistinguishable to a thread if it performs the same sequence of state changes in both execu-

tions. Given a configuration C and a transaction T , we let the configuration external to T in C

consist of the state of the shared memory and the states and private memories of all threads other

than thr(T ) in C.

Given a set of transactions T and an execution α, the execution interval of T in α, written

interval(α, T ), is the smallest subsequence of α containing all the base steps for the transactions

in T .
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Correctness. Our correctness criterion resembles the opacity condition of Guerraoui and Ka-

palka [43]. For a history H , and a partial order P on the transactions that appear in H , we say that

H satisfies P -opacity if there exists a sequential history S such that:

• S is equivalent to Complete(H).

• Every transaction Ti ∈ S is legal in S.

• If (Ti, Tj) ∈ P , then Ti ≺S Tj .

Given a function Γ that maps histories to partial orders of transactions that appear in those histories,

we say a TM satisfies Γ-opacity if every history H generated by the TM satisfies Γ(H)-opacity.

When Γ(H) is the real-time order on all the ordered pairs of non-concurrent transactions in H ,

the history S should preserve the real-time order of H as in the original definition of opacity. On

the other hand, when Γ(H) is empty, the correctness criterion is a serializability with consideration

of aborted transactions. The use of Γ makes it possible to require a transactional ordering that

lies between serializability and strict serializability according to any arbitrary rule (e.g., Riegel

et al. [70] considered demanding real-time order only from transactions belonging to the same

thread). We define a more general criterion in order to broaden the scope of our results. In the rest

of this thesis, we will assume that Γ(H) is a subset of the real-time order on transactions, unless

stated otherwise.

DAP. We define the notion of weak disjoint-access parallelism, following [10]. Let T1, T2 be

transactions, and let α be an execution. Let T be the set of all transactions whose execution

interval overlaps with the execution interval of {T1, T2} in α. Let X be the set of transactional

objects accessed by T . Let G(T1, T2, α) be an undirected graph with vertex set X , and an edge

between vertices x1, x2 ∈ X whenever there is a transaction T ∈ T accessing both x1 and x2. We

say T1, T2 are disjoint-access in α if there is no path between T1 and T2 in G(T1, T2, α). Given

two sets of base steps, we say they contend if there is a base object that is accessed by both sets of

steps, and at least one of the accesses changes the state of the object.

Definition 1. An STM is weakly disjoint-access parallel (weakly DAP) if, given any execution

α, and transactions T1, T2 that are disjoint-access in α, the base steps for T1 and T2 in α do not

contend.
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o1
T2

o2

T3

T1

CC

Figure 3.1: Example transactional run, transaction T2 reads version o1
2.

Depicting transactional runs. We depict transactional histories in the style of [70] (see Fig-

ure 3.1). An object oi’s state in time is represented as a horizontal line, with time proceeding left

to right. Transactions are drawn as polylines, with circles representing accesses to objects. Filled

circles indicate writes, and empty circles indicate reads. A commit is indicated by the letter C,

and an abort by the letter A. A read operation returning an old value of an object is indicated by

a dotted arc line. The initial value of object oi is denoted by o0
i , and the value written to oi by the

j’th write is denoted by oji .
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Chapter 4

On Avoiding Spurious Aborts in TM

This chapter deals with a theory for understanding aborts in transactional memory systems. Ex-

isting TMs may abort many transactions that could, in fact, commit without violating correctness.

We call such unnecessary aborts spurious aborts. We classify what kinds of spurious aborts can

be eliminated, and which cannot. We further study what kinds of spurious aborts can be avoided

efficiently. Specifically, we show that some unnecessary aborts cannot be avoided, and that there is

an inherent tradeoff between the overhead of a TM and the extent to which it reduces the number

of spurious aborts. We also present an efficient example TM algorithm that avoids certain kinds of

spurious aborts, and analyze its properties and performance.

A preliminary version of the work presented in this chapter appears in proceedings of the 21st

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2009).

4.1 Introduction

A transaction’s abort may be initiated by a programmer or may be the result of a TM decision.

In the latter case, we say that the transaction is forcefully aborted by the TM. For example, when

one transaction reads some object A and then writes to some object B, while another transaction

reads the old value of B and then attempts to write A, one of the transactions must be aborted in

order to ensure atomicity. Most existing TMs perform unnecessary (spurious) aborts, i.e., aborts

of transactions that could have committed without violating correctness; see Section 2.1. Spurious

aborts have several drawbacks: work done by the aborted transaction is lost, computer resources

18



are wasted, and the overall throughput decreases. Moreover, after the aborted transactions restart,

they may conflict again, leading to livelock and degrading performance even further.

This chapter aims to advance the theoretical understanding of TM aborts, by studying what

kinds of spurious aborts can or cannot be eliminated, and what kinds of spurious aborts can or can-

not be avoided efficiently. Specifically, we show that some unnecessary aborts cannot be avoided,

and that there is an inherent tradeoff between the overhead of a TM and the extent to which it

refrains from spurious aborts.

Previous works introduced two related notions: commit-abort ratio [40] and permissiveness [41].

The latter stipulates that if it is possible to proceed without aborts and still not violate correctness,

no aborts should happen. However, while shedding insight on the inherent limitations of online

TMs, these notions do not provide an interesting yardstick for comparing TMs. This is because

under these measures, all online TMs inherently perform poorly for some worst-case workloads,

as we show in Section 4.2.

In Section 4.3, we then define measures of spurious aborts that are appropriate for online TMs.

Intuitively, our strict online permissiveness property allows a TM to abort some transaction only

if not aborting any transaction would violate correctness. Unlike earlier notions, strict online

permissiveness does not prevent the TM from taking an action that might lead to an abort in the

future. Thus, the information available to the TM at every given moment suffices to implement

strict online permissiveness. Clearly, this property depends on the correctness criterion the TM

needs to satisfy. In this thesis, we consider opacity [43] or slight variants thereof (see Chapter 3).

In this context, strict online permissiveness prohibits aborting a transaction whenever the execution

history is equivalent to some sequential one. We prove that strict online permissiveness cannot be

satisfied efficiently by showing a reduction from the NP-hard view serializability [62] problem.

We then define a more relaxed property, online permissiveness, which allows the TM to abort

transactions if otherwise it would have to change the serialization order between already committed

transactions. We show that online permissiveness also has inherent costs — it cannot be satisfied

by a TM using invisible reads. Moreover, the information about a read should be exposed in shared

memory immediately after the read operation returns.

In Section 4.4, we show a polynomial time TM protocol satisfying online permissiveness.

The protocol maintains a precedence graph of transactions and keeps it acyclic. Unfortunately,

we show that the graph must contain some committed transactions. But without removing any
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committed transactions, detecting cycles in the precedence graph would be impractical as it would

induce a high runtime complexity. Hence, we define precise garbage collection rules for removing

transactions from the graph. Even so, a naı̈ve traversal of the graph would be costly; we further

introduce optimization techniques that decrease the number of nodes traversed during the acyclity

check.

4.2 Limitations of Previous Measures

4.2.1 Commit-Abort Ratio

The commit-abort ratio, τ , [40] is the ratio between the number of committed transactions and the

overall number of transactions in the history. Unfortunately, we now show that no online TM may

guarantee an optimal commit-abort ratio.

As we said earlier, a TM does not know read and write accesses in advance, i.e., a TM is

online. As opposed to this, we say that an offline algorithm knows the sequence of accesses of the

transaction beforehand.

Lemma 1. No TM can achieve the commit-abort ratio of an optimal offline algorithm.

o1

T1
o2

T2

T3

C A

o3 A

(a) Run r1: T2 commits, all other
transactions abort: τ = 1

3

o1

T1
o2

T2

T3

CA

o3

A

(b) Run r2: T1 commits, all other
transactions abort: τ = 1

3

Figure 4.1: No online TM may know whether to abort T1 or T2 in order to obtain an optimal
commit-abort ratio.

Proof. Consider the scenarios depicted in Figure 4.1. We show that no TM can achieve commit-

abort ratio better than 1
3

in both runs, while an optimal offline algorithm achieves τ = 2
3
. Transac-

tions T1 and T2 cannot both commit because they both write to o1 after reading its previous value.
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There are three possible scenarios for a TM algorithm: 1) abort T1, 2) abort T2, or 3) abort both T1

and T2. Clearly, in the third case τ cannot be better than 1
3
.

In run r1 (Figure 4.1(a)), the TM commits T2 and T1 is aborted. Then the adversary causes

transaction T3 to read o3 — it must be aborted because it conflicts with T2, resulting in τ = 1
3
.

In run r2 (Figure 4.1(b)), the TM commits T1 and T2 is aborted. In this case the adversary

causes T3 to read o2, T3 must be aborted because of its conflict with T1, resulting again in τ = 1
3
.

Note that the optimal offline TM in these cases would abort only one transaction, yielding

τ = 2
3
.

4.2.2 Permissiveness

Since requiring an optimal commit-abort ratio is too restrictive, we consider a weaker notion that

limits aborts only in runs where none are necessary. Recall that a TM accepts a certain history

if it commits all of its transactions. A TM provides π-permissiveness [41] if it accepts every

history satisfying π (a TM provides Γ-opacity-permissiveness if it accepts every history satisfying

Γ-opacity). Gramoli et al. showed that existing TM implementations do not accept all inputs they

could have, and hence are not permissive. We show that this is an inherent limitation.

o1

T1
o2

T2C

A
t0

T3

o3 C

(a) Run r1: T2 reads the value v1

o1

T1
o2

T2C

A
t0

T3

o3 C

T4

(b) Run r2: T2 reads the value v0

Figure 4.2: At time t0, no online TM knows which value should be returned to T2 when reading o1

in order to allow for commit in the future.

The formal impossibility illustrated in Figure 4.2 is captured in the following lemma:

Lemma 2. For any Γ, there is no online TM implementation providing Γ-opacity-permissiveness.

Proof. Consider the scenario depicted in Figure 4.2. All the objects have initial values, v0. All the

transactions start at the same time, and are therefore not ordered according to the real-time order,

thus the third condition of our correctness criterion holds for any Γ.
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T1 writes values v1 to o1 and v2 to o2. At time t0, there is a read operation of T2 and the TM

should decide what value should be returned. In general, the TM has four possibilities: (1) return

v1, (2) return v0, (3) return some value v′ different from v0 and v1, and (4) abort T2. If the TM

chooses to abort, then opacity-permissiveness is violated and we are done. (3) is not possible,

for returning such a value would produce a history, for which any equivalent sequential history S

would violate the sequential specification of o1 and thus would not be legal.

Consider case (1): the TM returns v1 for T2 at time t0. This serializes T2 after T1. Consider run

r1 depicted in Figure 4.2(a), where T3 tries to write to o3 and commit. In this run, the TM has to

forcefully abort T3, because not doing so would produce a history H with no equivalent sequential

history: T1 ≺ T2 ≺ T3 ≺ T1. However, if T2 would read v0 in run r1, then T2, T1 and T3 would

be legal, and no transaction would have to be forcefully aborted. So Γ-opacity-permissiveness is

violated.

In case (2), the TM returns v0 for transaction T2 at time t0, serializing T2 before T1. Consider

run r2 depicted in Figure 4.2(b). Transaction T4 writes to o2, and afterwards reads and writes to

o3. Transaction T4 has to be serialized after T1, because T1 has read v0 from o2. When T2 tries

to read and write to o3 and commit, T2 has to be serialized after T4 because they both read and

write to o3. Therefore, the TM will have to forcefully abort some transaction, because not doing

so would produce a history with no equivalent sequential history: T2 ≺ T1 ≺ T4 ≺ T2. But if

T2 would read v1 in run r2, then no transaction would have to be forcefully aborted. So again,

Γ-opacity-permissiveness is violated.

Runs r1 and r2 are indistinguishable to the TM at time t0. Therefore, no online TM can accept

both of the patterns, while an offline optimal TM can accept both of them.

4.3 Online permissiveness: limitations and costs

4.3.1 Strict Online Opacity-Permissiveness

Definition 2. Consider a history H , in which a transaction T receives an abort response A to one

of its operations op. We say that H ′ is a live-T modification of H if H ′ is the same as H except

that T receives a non-abort response to op in H ′.

We now define a property that prohibits unnecessary aborts, and yet is possible to implement.
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Definition 3. A responsive TM satisfies strict online Γ-opacity-permissiveness for a given Γ if the

TM forcefully aborts a transaction T in a history H only if there exists no live-T modification of

H that satisfies Γ(H)-opacity.

Note that this property does not define which transaction should be aborted if abort happens,

and does not prohibit returning a value that will cause aborts in the future. For example, in the

scenarios depicted in Figure 4.2, at time t0, a TM satisfying this property may return either value,

even though this might cause an abort in the future.

An algorithm satisfying strict online opacity-permissiveness should be able to detect whether

returning a given value creates a history satisfying Γ-opacity. We show that this cannot be detected

efficiently. To this end, we recall a well-known result about checking the serializability of the given

history, which was proven by Papadimitriou [62].

Given history H , the augmented history H̄ is the history that is identical to H , except two

additional transactions: Tinit that initializes all variables without reading any, and Tread that is the

last transaction of H̄ , reading all variables without changing them. The set of live transactions inH

is defined recursively in the following way: (1) Tread is live in H , (2) If for some live transaction

Tj , Tj reads a variable from Ti, then Ti is also live in H . Note that aborted transaction cannot

be live since no transaction may read a value written by an aborted one. A transaction is dead if

it is not live. Two histories H and H ′ are view equivalent if and only if (1) they have the same

sets of live transactions and (2) Ti reads from Tj in H if and only if Ti reads from Tj in H ′.

Note that a definition of view equivalence differs from a history equivalence defined in this thesis,

which demands the same order of operations for each transaction in equivalent histories. History

H is view serializable, if for every prefix H ′ of H , complete(H ′) is view equivalent to some serial

history S. The following is proven in [62]:

Theorem 3 (Papadimitriou). Testing whether the history H is view-serializable is NP-complete

in the size of the history, even if H has no dead transactions.

Lemma 4. For any Γ, detecting whether the history H satisfies Γ-opacity is NP-complete in the

size of the history.

Proof. We first note that the problem of detecting view serializability has a trivial reduction to

the problem of identifying whether a given history H is view equivalent to some serial history
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S. Hence, in order to prove the claim, we need to show a reduction from the problem of detecting

whether a historyH is view-equivalent to some serial history S to the problem of detecting whether

some history H ′ satisfies Γ-opacity. Consider history H with no dead transactions. Given the

assumption of unique write values and in the absence of aborted transactions, the definition of

view equivalence differs from the definition of opacity only in the fact that opacity refers to the

partial order Γ, which is a subset of a real-time order. We construct history H ′, which is identical

to history H except the following addition: for each Ti in H , we add start(Ti) at the beginning of

H ′. We will show that H is view equivalent to some serial history S if and only if H ′ satisfies

Γ-opacity.

All the transactions in H ′ are concurrent (start(Ti) follows before any other operation for every

Ti), therefore the third condition of Γ-opacity vacuously holds for any Γ. In the absence of aborts

in H ′, H ′ satisfies Γ-opacity if and only if there exists a legal sequential history S ′, so that every

transaction in H ′ issues the same invocation events and receives the same response events as in S ′.

Therefore, H ′ satisfies Γ-opacity if and only if H ′ is view-equivalent to some serial history S ′.

4.3.2 Online Opacity-Permissiveness

o1
T1

T2

o2

o3

T4

T3

C

C C

C

t0

Figure 4.3: The order of transactions T1 and T2 is changed after their commit time.

Intuitively, the problem with strict online opacity-permissiveness lies in the fact that the order

of committed transactions may be undefined and may change in the future. Consider, for example,

the scenario depicted in Figure 4.3. Transactions T1 and T2 are not ordered according to real-time

order, therefore they are not ordered by Γ. At time t0, the serialization order is T1 → T2, as o1 holds

the value written by T2. When T3 commits, the serialization order of T1 and T2 becomes undefined,

since T3 overwrites o1 before any transaction reads the value written by T2. And when T4 commits,

the serialization order becomes T2 → T4 → T1 → T3. If the partial serialization order induced
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by the run cannot change after being defined, the problem becomes much easier. To capture this

restriction, we extend the TM’s interface so as to make the serialization decisions explicit: every

commit operation returns a partial order on all committed transactions with conflicting writes.

Specifically, we assume that a successful tryCommit(Ti) operation returns, instead of C, a partial

order Ri on previously committed transactions.

We denote by R(t) the value returned in the last commit occurring by point t in H; R(t) is

empty if no commit occurs by time t in H .

Note that this interface is only intended to expose the internal state of the TM, in order to

facilitate reasoning, and can be filtered out before actually providing a response to the application.

Using this interface, we now define the persistent ordering property, which prevents a TM from

“changing its mind” about the serialization order of already committed conflicting transactions.

Definition 4 (Persistent Ordering). A history H (with the modified interface) satisfies persistent

ordering if: 1) R(t) orders all pairs of transactions Ti and Tj that have committed by point t and

their write-sets intersect. 2) For all t′ and t such that t′ < t, R(t′) ⊆ R(t). 3) H satisfies R(t)-

opacity for all t.

In other words, if committed transactions Ti and Tj both write to the same object in H , then

they are explicitly ordered by the time both of them commit and their order persists thereafter. We

say that a TM satisfies Persistent Ordering if every history generated by the TM satisfies Persistent

Ordering. We now define our more relaxed property, online Γ-opacity-permissiveness, which may

be satisfied at a polynomial cost.

Definition 5. A responsive TM satisfies online Γ-opacity-permissiveness for a given Γ if:

1. The TM satisfies Persistent Ordering.

2. The TM forcefully aborts a transaction T in a history H only if there exists no live-T modi-

fication of H that satisfies persistent ordering and Γ(H)-opacity.

Note that Definition 5 implies that each committing transactions should define its serialization

order with regard to all other committed transactions that have written to the same objects. To

the best of our knowing, all existing TMs do in fact define the order on two transactions that

write to the object by the time the latter transaction commits. We note that this requirement might
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be limiting for TMs that wish to exploit the benefits of commutative or write-only operations

(see [60]), and do not necessarily define the serialization point of the committed transactions.

However, this limitation is essential for an effective check of the opacity criterion.

In the following sections we show a polynomial-time TM satisfying online opacity-permissiveness.

We now prove that such an implementation, nevertheless, has some inherent costs.

Impossibility of invisible reads. One of the basic decisions that needs to be made during the

design of a TM is whether to expose the fact that transaction Ti has read the object o, i.e., make a

change in shared memory as a result of the read, making the read visible. In case we expose the

read, there arises another question, regarding whether we can postpone exposing the read until the

commit. One of the central problems with exposing the read is that it requires writing metadata in

shared memory. One typically tries to avoid writes to shared memory, because writing data that is

read by different cores has a high cache penalty. Postponing exposing the read until the commit

may save redundant writes in case the transaction eventually aborts.

Unfortunately, we shall now show that if the serialization order can violate the real-time or-

der of transactions, then online opacity permissiveness requires all reads to be exposed in shared

memory immediately after a read happens. To this end, we first need to rule out trivial TMs, for

example, ones that always return an object’s initial value in response to a read. We formally define

our non-triviality requirement as follows:

Definition 6. For a given Γ, a TM is not trivial if a read operation of object o by transaction Ti

does not return an older value than the last one written to o by a committed transaction before

Ti began, unless returning the last value written before Ti began generates a history H that is not

Γ(H)-opaque.

In other words, read may return an old value only if there is a good reason to do so (avoiding

an abort). We now show that every non-trivial TM satisfying online opacity-permissiveness with

no respect to real-time order must expose all its read operations immediately as they happen:

Lemma 5. Let Γ∅ be a function from histories to partial transactional orders such that Γ∅(H) = ∅.
If a non-trivial responsive TM satisfies online Γ∅-opacity-permissiveness, then any active transac-

tion Ti that has read n ≥ 2 distinct objects must keep all its reads visible.
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Figure 4.4: T3 does not distinguish between r1 and r2 at time t0 if Tr does not expose its read.

Proof. Assume by contradiction that there exists a non-trivial TM satisfying online Γ-opacity-

permissiveness and there exists an active transaction Tr that reads non-initial values of objects o1

and o2 (and perhaps some additional objects) until time t0 and does not expose the read of some

object o1, as depicted in the left part of Figure 4.4(a).

We now continue the run from t0 onward as described below. We invoke transaction T1 reading

object o3, and then transaction T2 that reads o3, writes to o3 and reads o2. By non-triviality, T1 and

T2 read the same version of o3, hence once T2 writes to o3, T2 is serialized after T1. Moreover,

T2 must read the version of o2 written by Tw2 — the same one as read by Tr. We next invoke

transaction T3, which reads o4. We then continue transaction T1 so that it writes to o2, then reads

o4, writes to o4 and commits. As mentioned earlier, T1 is serialized before T2 and T2 reads the

object version written by Tw2, therefore T1 must be serialized before Tw2 (and before Tr). Note

that T1 can be serialized before Tw2 because Γ∅ does not impose a real-time order on transactions.

By non-triviality, T1 and T3 read the same version of o4, hence T3 is serialized before T1 (and

before Tr).

Finally, we continue transaction T3 so that it reads o1, writes to o1 and tries to commit. By non-

triviality, T3 reads the version of o1 written by Tw1. The commit operation of T3 cannot succeed:

on the one hand, T3 must be serialized after Tw1, and on the other hand T3 must be serialized before

Tr, but T3 cannot be serialized between Tw1 and Tr because Tr reads the version of o1 written by

Tw1. Hence T3 aborts in r1.

Consider run r2 depicted in Figure 4.4(b). This run is identical to r1 except that Tr’s read of o1 is

removed. T3 can commit successfully in r2, with the following serialization order: {Tw1, T3, T1, Tw2, Tr, T2}.
Since we assume the TM satisfies online Γ-opacity-permissiveness, T3 commits. However, since
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Tr does not expose its read of o1, T3 cannot distinguish between r1 and r2, a contradiction.

4.4 The AbortsAvoider Algorithm

We now present AbortsAvoider, a TM algorithm implementing online opacity-permissiveness for

any given Γ. The basic idea behind AbortsAvoider is to maintain a precedence graph of transac-

tions, and keep it acyclic, as explained in Section 4.4.1. A simplified version of the protocol based

on this graph is then presented in Section 4.4.2. A key challenge AbortsAvoider faces is that com-

pleted transactions cannot always be removed from the graph, whereas keeping all transactions

forever is clearly impractical. We address this challenge in Section 4.4.3, presenting a garbage

collection mechanism for removing terminated transactions from the graph. In Section 4.4.4 we

present another optimization, which shortens paths in the graph to reduce the number of termi-

nated transactions traversed during the acyclity check. Our complexity analysis appears in the

same section.

4.4.1 Basic Concept: Precedence Graph

Information bookkeeping. Our protocol maintains object version lists. We now explain what

such a TM does: (1) each object o is associated with a totally ordered set of versions, (2) a read

of o returns the value of one of o’s versions, and (3) a write to o adds a new version of o upon

commit. For simplicity, at any given moment, we number the versions of the object in increasing

order. (Note that the numbering is for analysis purposes only, and the numbers of the versions

change during the run as the versions are inserted and removed from the versions list). The object

version o.vn includes the data, o.vn.data, the writer transaction, o.vn.writer, and a set of readers,

o.vn.readers. Each transaction has a readList and a writeList. An entry in a readList points to the

version that has been read by the transaction. A writeList entry points to the object that should be

updated after commit, the new data, and the place to insert the new version, (which may be unde-

fined till the commit). For the sake of simplicity we assume that the values written to transactional

objects are unique.

Precedence graph. Transactions may point to one another, forming a directed labelled prece-

dence graph, PG. PG reflects the dependencies among transactions as created during the run. We
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denote a precedence graph of history H as PGH . The vertices of PG are transactions, the edges

of PG are as follows (Figure 4.5):

o.vn

writer

readers

o.vn-1

writer

readers

RaW

WaW

RaW W
aR

Figure 4.5: Object versions and the precedence graph, PG.

If (Tj, Ti) ∈ Γ(H), then PG contains (Tj, Ti) labelled LΓ (Γ order). If Ti reads o.vn and

Tj writes o.vn, then PG contains (Tj, Ti) labelled LRaW (Read after Write). If transaction Ti

writes o.vn and Tj writes o.vn−1, then PG contains (Tj, Ti) (Write after Write) labelled LWaW .

If transaction Ti writes o.vn and Tj reads o.vn−1, then PG contains (Tj, Ti) labelled LWaR (Write

after Read).

Below we present lemmas that link maintaining acyclity in PG and satisfying online-permissiveness.

To this end, we restrict our discussion to non-local histories, which we now define. We say that a

read operation of Ti readi(o) in H is local if it is preceded in H|Ti by a write operation writei(o,v).

A write operation writei(o,v) is local if it is followed inH|Ti by another write operation writei(o,v’).

The non-local history of H is the longest subsequence of H not containing local operations [43].

Note that the precedence graph does not refer to local operations.

We denote PG(t) to be the graph at time t. We define λPG to be the following binary relation:

if PG contains a path from Ti to Tj consisting of LWaW edges, then Ti ≺λPG
Tj . Note that if PG

is acyclic, then λPG is reflexive, antisymmetric and transitive, and therefore λPG is a partial order.

Lemma 6. Consider a TM maintaining object version lists. If PG is acyclic throughout some run,

then the non-local history H of the run satisfies Γ ∪ λPG-opacity.

Proof. Let H be a history over transactions {T1 . . . Tn}. Let HC = Complete(H), i.e. H with Ai

added for every active Ti ∈ H .

Since PG is acyclic, it can be topologically sorted. Let Ti1, . . . , Tin be a topological sort of

PG, and let S be the sequential history Ti1, . . . , Tin. Clearly, S is equivalent to HC because both

of the histories contain the same transactions and each transaction issues the same operations and

receives the same responses in both of them.
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We now prove that every Ti ∈ S is legal. Assume by contradiction that there are non-legal

transactions in S. Let Ti be the first such transaction. If Ti is non-legal, Ti reads a value of object

o that is not the latest value written to o in S by a committed transaction. (Recall that by definition

of object version lists, only values written by committed transactions can be read.) S contains only

non-local operations, and therefore Ti reads the version o.vn written by another transaction Tj .

Therefore, there is an edge from Tj to Ti in PG. It follows that Tj is committed in S and ordered

before Ti according to the topological sort. If the value of o.vn is not the latest value written in

S before Ti, then there exists another committed transaction T ′j that writes to o and is ordered

between Tj and Ti in S. If T ′j writes to a version earlier than o.vn, then there is a path from T ′j to

Tj in PG, and therefore T ′j is ordered before Tj in S. If T ′j writes to a version later than o.vn, then

there is a path from Ti to T ′j in PG, and therefore T ′j is ordered after Ti in S. In any case, T ′j cannot

be ordered between Tj and Ti in S, a contradiction.

For each pair Ti ≺Γ Tj , PG contains an edge from Ti to Tj . Therefore, according to the

topological sort, S preserves the partial order Γ. By definition S also preserves the order defined

by λPG.

Summing up, Complete(H) is equivalent to a legal sequential history S, and S preserves partial

order Γ ∪ λPG. Therefore H is Γ ∪ λPG-opaque.

Lemma 7. Every TM that maintains object version lists and keeps PG acyclic satisfies persistent

ordering.

Proof. In order to prove that a TM satisfies persistent ordering we need to show the following:

1) define a partial order Ri returned by a successfully committed transaction (in other words,

define the way a TM exports an ordering interface); 2) show that Ri orders all pairs of committed

transactions with a non-empty intersection of their write-sets; 3) show that R(t) monotonically

increases with t and 4) prove that H|t satisfies R(t)-opacity at any t.

1) We define Ri returned by a successfully committed transaction at time t to be λPG(t); in

other words Ri orders Ti and Tj if they are connected in PG by LWaW edges.

2) Consider two committed transactions Tk and Tm that have a common object o in their write-

sets such that Tk has written to the version o.vi and Tm has written to the version o.vj , where

i < j. In this case PG contains a path from Tk to Tm consisting of LWaW edges and therefore λPG

contains a pair (Tk, Tm). Hence, Ri orders all pairs of committed transactions with a non-empty

intersection of their write-sets.
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3) According to the rules for updating PG, LWaW edges are never removed and R(t′) ⊆ R(t)

for every t′ < t.

4) According to Lemma 6, H|t satisfies λPG(t)-opacity and thereforeH|t satisfiesR(t)-opacity.

Lemma 8. Consider a responsive TM maintaining object version lists and keeping PG acyclic.

Consider that this TM forcefully aborts a transaction T in a history H only if there exists no live-T

H’s modification H ′, such that PG′H contains no cycles. Then this TM satisfies online Γ-opacity-

permissiveness.

Proof. As shown in Lemma 7, the TM satisfies persistent ordering. We need to show that if there

is a cycle in PG, then the run violates (Γ ∪ λPG)-opacity.

We show first that if there is an edge (Ti, Tj) in PG, then every legal sequential history S

preserving Γ ∪ λPG and equivalent to Complete(H) orders Ti before Tj . Consider two transactions

Ti and Tj such that there is an edge (Ti, Tj) in PG. If the edge is labeled LΓ, then (Ti, Tj) ∈ Γ,

and S orders Ti before Tj . If the edge is labeled LRaW , then Tj reads a value written by Ti and S

also orders Ti before Tj . If the edge is labeled LWaW , then Ti < Tj according to λPG, hence S also

orders Ti before Tj . If the edge is labeled LWaR, then Ti reads o.vn while Tj writes o.vn+1. On

the one hand, Tj should be ordered after o.vn.writer in S (there is an edge from o.vn.writer to Tj

labeled LWaW ). On the other hand, Tj cannot be ordered between o.vn.writer and Ti, because Ti

must read the value written by o.vn.writer in S. Therefore, Tj is ordered after Ti in S in this case

as well.

Summing up, an edge (Ti, Tj) in the precedence graph induces the order of Ti before Tj in any

legal sequential history S preserving Γ ∪ λPG and equivalent to Complete(H). Therefore, if PG

contains a cycle, no such sequential history exists, and the TM cannot satisfy Γ ∪ λ-opacity.

Corollary 9. Consider a TM maintaining object version lists that keeps PG acyclic. Consider

that this TM forcefully aborts a transaction T in a history H only if there exists no live-T H’s

modification H ′, such that PG′H contains no cycles. Then this TM satisfies Γ-opacity and online

Γ-opacity-permissiveness.
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4.4.2 Simplified Γ-AbortsAvoider Algorithm

AbortsAvoider algorithm maintains object version lists as explained above, keeps PG acyclic and

forcefully aborts a transaction only if not aborting any transaction would create a cycle in PG.

Read and write operations are straightforward, they are depicted in Algorithm 1. A read operation

(line 4) looks for the latest possible object version to read without creating a cycle in PG. Write

operations (line 13) postpone the actual work till the commit.

Algorithm 1 Γ-AbortsAvoider for Ti - Read/Write.
1: procedure START()
2: prev = {Tj : (Tj , Ti) ∈ Γ(H)∧ 6 ∃Tk ∈ PG : (Tj , Tk) ∈ Γ(H)}
3: ∀Tprev ∈ prev : PG.ADDEDGES({(Tprev, Ti)})

4: procedure READ(Object o)
5: if o ∈ Ti.writeList then return Ti.writeList[o].data
6: if o ∈ Ti.readList then return Ti.readList[o].data
7: n← the latest version that can be read without creating a cycle in PG
8: if n =⊥ then return abort event Ai

9: PG.ADDEDGES({(o.vn.writer, Ti),(Ti, o.vn+1.writer)})
10: o.vn.readers.ADD(Ti)
11: Ti.readList.ADD(〈o.vn〉)
12: return o.vn.data

13: procedure WRITE(Object o, ObjectData val)
14: if o ∈ Ti.writeList then
15: Ti.writeList[o].data← val; return
16: if o ∈ Ti.readList then
17: B non-blind write, victim version is read version
18: writeNode← 〈o,readList[o].version, val〉
19: else
20: B blind write, victim version is not known
21: writeNode← 〈o,⊥,val〉
22: Ti.writeList.ADD(writeNode)

The commit operation is more complicated. Intuitively, for each object written during transac-

tion, the algorithm should find a place in the object’s version list to insert the new version without

creating a cycle. Unfortunately, checking the objects one after another in a greedy way can lead to

spurious aborts, as we illustrate in Figure 4.6(a). Committing T3 first seeks for a place to install

the new version of o1 and decides to install it after the last one (serializing T3 after T2). When T3

considers o2, it discovers that the new version cannot be installed after the last one, because T3

should precede T1, but it also cannot be installed before the last one, because that would make T3

precede T2, so T3 is aborted. However, installing the new version of o1 before the last one would

have allowed T3 to commit, as depicted in Figure 4.6(b), that is why aborting T3 violates online Γ-
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Figure 4.6: Checking the written objects in a greedy way during the commit may lead to a spurious
abort.

opacity-permissiveness.

Our commit operation (Algorithm 2, line 23) is divided to two phases. We call the object

version after which the new version is to be installed a victim version. The victim version is known

only for the non-blind writes (that is version, which has been read before the write, line 18).

In the first phase the algorithm tries to install the non-blind writes (lines 27–33). In the second

phase (lines 35–48) the algorithm tries to find the vicim versions for the blind writes in iterations.

Initially, the victim is the object’s latest version. In each iteration, the algorithm traverses the

objects and for each one searches for the latest possible victim to install the new version without

creating a cycle in PG (line 40). When victim o.vn is found, an edge from Ti to the writer of

o.vn+1 is added to PG (line 46). We add only the outgoing edges at this point, because changing

the victim from o.vn to o.vn−1 may remove some incoming edges to Ti but cannot remove outgoing

ones. Meanwhile, incoming edges are kept in inEdges. After each iteration, there are possibly new

outgoing edges added to PG, that would mean that the previously found victim versions might not

suit anymore and a new iteration should be run. Once there is an iteration when no new edges are

added, the algorithm commits — it installs the new versions after their victims and adds all the

edges, including inEdges from the latest iteration, to the PG.

The following lemma immediately follows from the protocol.

Lemma 10. Γ-AbortsAvoider maintains PG acyclic.

Proof. The edges added to the graph are defined in functions READ (line 7) and VALIDATEWRITE

(line 63). Both functions validate that adding the new edges preserves PG acyclity.

We now want to show that the algorithm does not introduce unnecessary aborts.
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Algorithm 2 Γ-AbortsAvoider for Ti - Commit.
23: procedure COMMIT
24: newEdges← ∅ B edges added upon commit
25: blinds← ∅ B the set of blind writes
26: B Phase I — install the non-blind writes
27: for each n in Ti.writeList do
28: if n.victim 6=⊥ then
29: (v,edgs)←VALIDATEWRITE(newEdges,n.victim)
30: if v = FALSE then return abort event Ai

31: newEdges← newEdges ∪ edgs
32: else
33: blinds← blinds ∪ {n}
34: B Phase II — install the blind writes
35: repeat
36: foundOutEdges← FALSE
37: inEdges← ∅
38: for each n in blinds do
39: B find the latest possible victim
40: (victim,edges)←FINDVICTIM(newEdges,n)
41: if victim =⊥ then return abort event Ai

42: for each e in edges do
43: if e is incoming to Ti then
44: inEdges← inEdges ∪ e
45: else if e /∈ newEdges then
46: newEdges← newEdges ∪ {e}
47: foundOutEdges← TRUE
48: until foundOutEdges = FALSE
49: B commit point
50: for each n in Ti.writeList do
51: install the new version right after n.victim
52: PG.ADDEDGES(newEdges ∪ inEdges)

53: procedure FINDVICTIM(List〈Edge〉 newEdges, WriteNode wn) : (ObjectVersion, List〈Edge〉)
54: B find the latest possible victim
55: if wn.victim =⊥ then vctm←wn.latestVersion
56: else vctm← wn.victim
57: while vctm 6=⊥ do
58: B check installing the new version after vctm
59: (valid, edges)←VALIDATEWRITE(newEdges,vctm)
60: if valid = TRUE then return (vctm,edges)
61: vctm← vctm.prev B go to the previous version
62: return (⊥,⊥) B no suitable victim found

63: procedure VALIDATEWRITE(List〈Edge〉 edges, ObjectVersion o.vn) : (boolean, List〈Edge〉)
64: added←{(o.vn.writer, Ti), (o.vn.readers, Ti), (Ti, o.vn.next.writer)}
65: valid←acyclity of PG after adding edges ∪ added
66: return (valid, added)

Theorem 11. Γ-AbortsAvoider forcefully aborts a transaction T in a history H only if there exists

no live-T H’s modification H ′, such that PG′H contains no cycles.
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Proof. We first note that in Γ-AbortsAvoider no transaction can abort other transactions – the only

transaction that can be aborted as a result of Ti’s operation invocation is Ti by itself. Hence, if

Γ-AbortsAvoider aborts a set S of transactions, then |S| = 1. Therefore, it is sufficient to prove

the following: Γ-AbortsAvoider forcefully aborts a transaction only if not aborting any transaction

would create a cycle in PG.

The read operation of object o (line 4) returns Ai only if there is no object version to read

without introducing a cycle in PG. Write operation (line 13) does not abort any transaction — it

postpones all the work till the commit.

Commit operation (line 23) tries to write the new versions of all the objects written during

the transaction. If the object is written in the non-blind way, then the victim version is known

beforehand and the new version has to be installed after the version that has been read (line 29).

In this case the validation is done by validateWrite function (line 63), which fails if and only if

adding the appropriate edges to PG creates a cycle.

It remains to show that commit function does not succeed to execute the blind writes only if

that creates a cycle in PG. We will show now that if there exists a way to execute the blind writes

without creating a cycle in PG, the algorithm will find it.

First of all, we will analyze the variable newEdges (line 24), which keeps the set of the edges

added to PG upon successful commit. Edge (Ti, Tj) ∈ newEdges is compulsory, if PG must have

a path from Ti to Tj after successful commit (to that end, the edge represents a real, compulsory

dependency).

Lemma 12. During COMMIT() function of AbortsAvoider algorithm, newEdges set contains com-

pulsory edges only.

Proof. In the first phase of COMMIT(), AbortsAvoider proceeds the non-blind writes (lines 27–33).

There is a single possible victim version for the non-blind write, and therefore the edges added to

newEdges set during the first phase are compulsory.

Consider the second phase of COMMIT(), when AbortsAvoider proceeds the blind writes

(lines 35–48). We will show by induction that all the edges added to newEdges in the second

phase are compulsory.

Induction basis. At the beginning of the second phase newEdges set contains only the edges

added by the non-blind writes, which are compulsory, as shown before.
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Induction step. Let’s assume, that all the edges added to newEdges by the algorithm so far are

compulsory. Consider new edge (Ti, o.vk+1.writer) added to newEdges by the algorithm in line 46.

This happens if o.vk is chosen to be a victim version for writing to object o. According to the

algorithm, o.vk is chosen to be the victim version only if all the versions o.vk′ for k′ > k did not

suit to be the victim versions for a given newEdges set. According to the induction assumption,

newEdges set contains compulsory edges only, therefore all the versions o.vk′ for k′ > k cannot be

victim versions for the write operation. According to the algorithm, choosing any object version

o.vk′ for k′ ≤ k (i.e., object version that is earlier than o.vk) yields a path from Ti to o.vk+1.writer

in PG, finishing the proof.

For each object written in a blind way the algorithm checks the victim versions starting from the

latest one. Victim version validation is executed in the following way: PG is checked for acyclity

after inserting the edges from newEdges set together with the edges corresponding to adding the

new version after o.vk. As stated in Lemma 12, newEdges set contains compulsory edges only,

therefore validation fail for o.vk means that neither o.vk, nor any version later than o.vk can be the

victim version of o. The algorithm traverses the objects in iterations, till it finds a combination of

victim versions that does not create a cycle in PG (and then commits), or discovers object o such

that none of o’s versions can be the victim version (and then aborts).

Corollary 13. Γ-AbortsAvoider satisfies Γ-opacity and online Γ-opacity-permissiveness.

We have shown that Γ-AbortsAvoider protocol is correct and avoids unnecessary aborts. In the

rest of the chapter we will show the garbage collection rules and optimization techniques for the

protocol.

4.4.3 Garbage Collection

A TM should garbage collect unused metadata. In our case, metadata consists of the objects’

previous versions as well as terminated transactions. In this section, we describe how those may

be garbage collected.

Read operations. Consider transaction Ti reading object o. The following lemma stipulates that

some of the edges added to the precedence graph in the simplified protocol are redundant, and in
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fact, the only edges that need to be added by the protocol during read operations are incoming

ones.

Lemma 14. When Ti reads o.vn, it suffices to add one edge from o.vn.writer to Ti in PG.

Proof. We say that adding an edge (v1, v2) is unnecessary, if PG already contains a path from v1

to v2, thus adding this edge does not influence on the cycle detection. We will show that adding

the outgoing edge from Ti to o.vn.writer during a read is unnecessary. Therefore the only edge that

need to be added by the protocol is the edge from o.vn−1.writer to Ti.

The protocol adds outgoing edge from Ti to o.vn.writer if Ti reads version o.vn−1. According

to the algorithm, Ti tries first to read the latest version o.vn+k, if this read creates a cycle, it tries to

read o.vn+k−1, o.vn+k−2 and so on till it arrives to o.vn−1. Note, that before starting the read, the

graph PG was acyclic. If Ti does not succeed to read o.vn+k, it means that adding an edge from

o.vn+k.writer to Ti would create a cycle, hence there is a path from Ti to o.vn+k.writer before the

start of the read. When Ti tries to read o.vn+k−1 and does not succeed, it means that adding the

edges {(o.vn+k−1.writer, Ti), (Ti, o.vn+k.writer)} creates a cycle in PG. As we have concluded,

before the read, PG contained a path from Ti to o.vn+k.writer and was acyclic, therefore adding

the single edge (o.vn+k−1.writer, Ti) creates a cycle in PG, i.e. there was a path from Ti to

o.vn+k−1.writer before the read. Continuing in the same way, we conclude that before the read there

was a path from Ti to o.vn.writer. Therefore, adding an edge from Ti to o.vn.writer is unnecessary.

Using the optimization above, no incoming edge is ever added to a terminated transaction as a

result of a read operation.

Write operations. We would like to know whether the new incoming edges may be added to a

terminated transaction as a result of write operation. Consider committed transaction Ti that has

written to o. If the new version o.vn has been written in a non-blind way (i.e. transaction Ti has

read the version o.vn−1 and then installed o.vn), then no other transaction Tj will be able to install

a new version between o.vn−1 and o.vn, for that would cause a cycle between Ti and Tj . Blind

writes, however, are more problematic. Consider, for example, the scenario depicted in Figure 4.7.

At time t0, T1 has no incoming edges, but we are still not allowed to garbage collect it as we now

explain. There is a transaction T2 that read object o1 with an active preceding transaction T3. At the
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time of T3’s commit, it discovers that it cannot install the last version of o1, and tries to install the

preceding version. Had we removed T1 from PG, this would have caused a consistency violation,

because we would miss the cycle between T1 and T3.

o1

T1

T2

o2 T3

C

C

t0

A

Figure 4.7: The blind write of transaction T1 does not allow us to garbage collect it at time t0.

The example above demonstrates the importance of knowing that from some point onward, Ti

may have no new incoming edges. The lemma below shows that some edge additions can be saved:

Lemma 15. If Ti is a terminated transaction, then no incoming edges need to be added to Ti in

PG as long as for each o.vn written blindly by Ti there is no reader with an active preceding

transaction.

Proof. Consider a terminated transaction Ti satisfying conditions of the lemma. According to

Lemma 14 no transaction may add incoming edges to Ti as a result of read operation. It remains

to check the writes. According to the protocol, the incoming edge to Ti may be added only if

transaction Tj installs the version prior to the version o.vn written by Ti. First of all we should

notice that o.vn should be written in a blind way in order to make this scenario happen. Secondly,

if Tj tries to insert a new version before o.vn, it means that Tj failed to insert its version after o.vn,

i.e. adding the edges from Ti and from the readers of o.vn to Tj created a cycle. But we know that

Tj cannot precede the readers of o.vn according to the condition of the lemma, that is why there

was a path from Tj to Ti before the write operation of Tj . Therefore there is no need to add the

edge from Tj to Ti when installing the new version.

Garbage collection conditions. We say that a transaction is stabilized if no incoming edges may

be added to it in the future. At the moment when Ti has no incoming edges and it is stabilized, we

know that Ti will not participate in any cycle, and thus may be garbage collected.
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Theorem 16. The terminated transaction Ti is stabilized at time t0 if either (1) Ti has not written

blindly any object version o.vn, or (2) all active transactions at time t0 and all the transactions

beginning after t0 follow Ti according to Γ.

Proof. According to Lemma 15, no incoming edges need to be added to terminated Ti in PG if Ti

has no blind writes. If transaction Tj follows Ti according to Γ, then according to AbortsAvoider

algorithm, PG will contain a path from Ti to Tj after START() operation of Tj . Therefore, Tj

may not add incoming edge to Ti if Ti ≺Γ Tj . Hence, if all active transactions at t0 and all the

transactions beginning after t0 follow Ti according to Γ, then no new incoming edges will be added

to Ti.

For this, we deduce that terminated transactions with no incoming edges satisfying one of the

conditions of Theorem 16 may be garbage collected. Note that in the runs with no blind writes,

every terminated transaction is stabilized and thus the transaction may be garbage collected at the

moment it has no incoming edges.

4.4.4 Path Shortening and Runtime Analysis

AbortsAvoider protocol allows adding new edges to PG only if they do not introduce cycles in

PG. The straightforward cycle detection algorithm runs DFS starting from Ti, traversing a set of

nodes we refer to as ingressi. We now present an optimization that reduces the number of nodes in

ingressi.

Consider stabilized terminated Tj . The idea is to connect the ingress nodes to the egress nodes

of Tj directly, thus preventing DFS from traversing Tj . This becomes possible because Tj is stabi-

lized and thus may not have new ingress nodes, hence the egress nodes do not miss the precedence

info when they lose their edges from Tj . Once a terminated transaction Tj satisfies the conditions

of Lemma 15 and it can no longer have additional incoming edges, (e.g., any transaction with no

blind writes), we remove all of its outgoing edges by connecting its ingress nodes directly to its

egress nodes as described above, and indicate that Tj is a sink, i.e., cannot have outgoing edges in

the future. Once a transaction is marked as a sink, any outgoing edge that should be added from

it is instead added from its ingress nodes. Note that our path shortening only bypasses stabilized

nodes. Had we bypassed also non-stabilized ones, we would have had to later deal with adding
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new incoming nodes to their egress nodes, which could require a quadratic number of operations

in the number of terminated transactions. Hence, we chose not to do that.

Runtime complexity of the operations. Running DFS on ingressi takes O(V 2), where V is

the number of transactions preceding Ti, whose nodes have not been garbage collected. In the

general case, V = #terminated + #active. But if all the transactions preceding Dsci had no blind

writes, V = #active.

o1
T1

o2 C

T2

C

T3

C

Tk

Figure 4.8: All object versions must be kept, as their writers have an active preceding transaction
T2.

The read operation seeks the proper version to read in the version list. Unfortunately, the

number of versions that need to be kept is limited only by the number of terminated transactions.

Consider the scenario depicted in Figure 4.8. Here, the only version of o2 that may be read by

T1 is the first, all other versions are written by transactions that T1 precedes. In order to find a

latest suitable version, the read operation may use a binary search – O(log(#terminated)) versions

should be checked. Adding the edges takes O(#active). So altogether, the read complexity is

O(log(#terminated)·max{#active2, #terminated2}), andO(log(#terminated)·#active2) when there

are no blind writes.

The write operation postpones all the work till the commit. The number of iterations in the

commit phase is O(#writes · #terminated), and in each iteration O(#writes) validate operations

should be run. So the overall write cost isO(#writes2 ·#terminated·max{#active2, #terminated2}),

and O(#active2) when there are no blind writes.

Finally, we would like to emphasize that although in the worst-case, these costs may seem high,

transactions without blind writes are garbage collected immediately upon commit. Moreover, the

only nodes in ingressi where cycles are checked are transactions that conflict with Ti. Typically,

in practice, the number of such conflicts is low, suggesting that our algorithm’s common-case

complexity is expected to be good. On the other hand, if the number of conflicts is high, then

most TMs existing today would abort one of the transactions in each of these cases, which is not

necessarily a better alternative.
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Chapter 5

On Maintaining Multiple Versions in STM –

Theoretical Properties

An effective way to reduce the number of aborts in software transactional memory is to keep

multiple versions of transactional objects. In this chapter, we study inherent properties of STMs

that use multiple versions to guarantee successful commits of all read-only transactions. We first

show that these STMs cannot be disjoint-access parallel. We then consider the problem of garbage

collecting old object versions. We show that the memory consumption of algorithms keeping a

constant number of versions per object might grow exponentially with the number of objects, and

prove that no STM can be optimal in the number of previous versions kept. Moreover, we show that

garbage collecting useless versions is impossible in STMs that implement invisible reads. Finally,

we present an STM algorithm using visible reads that efficiently garbage collects useless object

versions.

A preliminary version of the work presented in this chapter appears in proceedings of the 29th

ACM Symposium on Principles of Distributed Computing (PODC 2010).

5.1 Introduction

As mentioned in Chapter 4, frequent aborts, especially in the presence of long-running transactions,

may have a devastating effect on performance [11], therefore, reducing the number of aborts is an

important challenge.
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Of particular interest in this context is reducing the abort rate of read-only transactions. Read-

only transactions play a significant role in various types of applications, including linearizable

data structures with a strong prevalence of read-only operations [49], or client-server applications

where an STM infrastructure replaces a traditional DBMS approach (e.g., FenixEDU web appli-

cation [24]). Particularly long read-only transactions are employed for taking consistent snapshots

of dynamically updated systems, which are then used for checkpointing, process replication, mon-

itoring program execution, gathering system statistics, etc.

Unfortunately, long read-only transactions in current leading STMs tend to be repeatedly aborted

for arbitrarily long periods of time. As we show below, the time for completing such a transaction

varies significantly under contention, to the point that some read-only transactions simply cannot

be executed without “stopping the world”. As mentioned by Cliff Click [1], this kind of instability

is one of the primary practical disadvantages of STM; Click mentions multi-versioning [16] (i.e.,

keeping multiple versions per object), as a promising way to make program performance more

predictable.

Indeed, by keeping multiple versions it is possible to assure that each read-only transaction

successfully commits by reading a consistent snapshot [15] of the objects it accesses. Consider,

for example, the scenario depicted in Figure 5.1. In this run transaction T2 reads an object o1,

then another transaction T3 updates objects o1 and o2, and commits. Assume that T2 now tries

to read o2. Reading the value o2
2 written by T3 would violate correctness, since T2 does not read

the value o1
2 written by T3. In a single-versioned STM, illustrated in Figure 5.1(a), T2 must abort.

However, a multi-versioned STM may keep both versions o1
2 and o2

2 of o2, and may return o1
2 to T2,

as illustrated in Figure 5.1(b). This allows T2 to successfully commit, in spite of its conflict with

T3.

o1
T2

o2

T3

T1

ACC

(a) Single-versioned TM, T2
aborts.

o1
T2

o2

T3

T1

CC

(b) Multi-versioned TM, T2
commits.

Figure 5.1: Keeping multiple versions avoids aborts, which are inevitable in STMs with only one
object version.

We can capture the amount of spurious aborts that we allow using the notion of permissive-
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ness. Some previously defined permissiveness conditions, such as single-version permissiveness

[41], are too weak, and still allow many spurious aborts. Other permissiveness conditions, such as

online π-permissiveness 4, prevent all spurious aborts, but require complex algorithms to imple-

ment (see Section 2.1 for details). In Section 5.2, we define the new notion of multi-versioned (MV)

permissiveness. It ensures that read-only transactions never abort, and permits update transactions

to abort only when they conflict with other update transactions. We consider a special class of re-

sponsive MV-permissive STMs, which do not allow a transaction to wait for other transactions’ op-

erations (a responsiveness notion is defined formally in Section 3). Responsive MV-permissiveness

can be achieved by practical algorithms. In fact, the algorithms in [69, 22, 11] would all satisfy it

if they kept enough object versions.

However, using multiple versions introduces the challenge of their efficient garbage collection.

As demonstrated in Chapter 6, a simple approach of keeping a constant number of versions for

each object does not provide enough of a performance benefit, and, even worse, can cause severe

memory problems in long executions. Moreover, as we show below in Section 5.3, the memory

consumption of algorithms keeping k versions per object might grow exponentially with the num-

ber of objects. The challenge is, therefore, to devise an approach for efficient management of old

object versions. In Section 5.3, we show that this problem is inherent. We prove that no STM

algorithm can be space optimal, i.e., ensure that it always maintains the minimum number of ob-

ject versions possible. We then define an achievable GC property called useless prefix (UP) GC,

based on maintaining object versions only when they may be needed by some existing read-only

transactions.

Satisfying responsive MV-permissiveness (and UP GC) imposes costs on an STM. In Sec-

tion 5.4, we show that a responsive MV-permissive STM cannot be weakly disjoint-access parallel

(DAP). Roughly speaking, this means that in order to ensure that read-only transactions never

abort, it is necessary for transactions to communicate with each other, even when they do not ac-

cess the same transactional objects. We also show that if a responsive STM is MV-permissive and

satisfies UP GC, then read-only transactions must leave some trace of themselves in shared mem-

ory, even after they have committed. Note that this implies the STM cannot use invisible reads

[32], an important technique for optimizing read-only transactions. We also note that if the UP GC

requirement is omitted, then it is possible to implement an STM using invisible reads, as shown

in Chapter 6, assuming there exists a garbage collection thread that sees the private (“invisible”)
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memory of all transactions, such as the Java GC.

Responsive MV-Permissiveness (Sec. 5.2)
Constant num of versions Exponential memory growth (Sec. 5.3.1)
Space Optimality Impossible (Sec. 5.3.2)
DAP Impossible (Sec. 5.4.1)

UP GC (Sec. 5.3.3)
– Impossible when read-only transactions
leave no trace after commit. (Sec. 5.4.2)

– Possible: non-DAP and visible reads. (Sec. 5.5)

Table 5.1: Multi-versioning in STM: summary of limitations.

To complete our exploration of the design space of MV-permissiveness and garbage collection,

we present in Section 5.5 a non-DAP algorithm using visible reads, satisfying responsive MV-

permissiveness and UP GC. Our results are summarized in Table 5.1.

5.2 Multi-Versioned Permissiveness

One of the main benefits of multi-versioning is reducing the aborts rate. In order to evaluate

the effectiveness of multi-versioned STMs, we need to formally define the set of aborts that are

avoided. Such restrictions on aborts are captured by permissiveness conditions. In this section, we

define a practically achievable permissiveness property that is suited for multi-versioned STMs.

Multi-versioning is particularly useful for avoiding aborts of read-only transactions. In fact,

by keeping enough versions, read-only transaction can always find appropriate object versions to

read, and commit successfully. Our permissiveness condition captures this property. Together with

responsiveness, MV-permissiveness captures the property that read-only transactions neither abort

nor block update transactions.

Definition 7. An STM satisfies multi-versioned (MV)-permissiveness if a transaction aborts only

when it is an update transaction that conflicts with another update transaction.

We say that an STM satisfying MV-permissiveness is MV-permissive.

Some multi-versioned algorithms [69, 11] are not MV-permissive, because they do not always

keep all the object versions needed to commit all read-only transactions. However, the algorithm

we present in Section 5.5, as well as the algorithm presented in Chapter 6, are responsive and

MV-permissive.
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5.3 Garbage Collection Properties

A key aspect to maintaining multiple versions is a mechanism for garbage collecting (GC) old

object versions. This section considers three sides to this problem. We first demonstrate that

keeping a constant number of versions for each object can cause exponential memory growth in

Section 5.3.1. In Section 5.3.2 we show that no STM can always keep the minimum number of old

object versions. Then in Section 5.3.3, we define an achievable GC property that removes many

old versions.

5.3.1 A Naı̈ve Approach: Exponential Memory Growth
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Figure 5.2: Example demonstrating exponential memory growth for an STM keeping only 2 ver-
sions of each object.

We first describe an inherent memory consumption problem of algorithms keeping a constant

number of object versions. A naı̈ve assessment of the memory consumption of a k-versioned STM

would probably estimate that it takes up to k times as much more memory as a single-versioned

STM.

We now illustrate that, in fact, the memory consumption of a k-versioned STM in runs with n

transactional objects might grow like kn. Intuitively, this happens because previous object versions

continue to keep references to already deleted objects, which causes deleted objects to be pinned

in memory.

Consider, for example, a 2-versioned STM in the scenario depicted in Figure 5.2. The STM

45



keeps a linked list of three nodes. When removing node 30 and inserting a new node 40 instead,

node 30 is still kept as the previous version of 20.next. Next, when node 20 is replaced with node

25, node 30 is still pinned in memory, as it is referenced by node 20. After several additional node

replacements, we see that there is a complete binary tree in memory, although only a linked list is

used in the application.

More generally, with a k-versioned STM, a linked list of length n could lead to Ω(kn) node

versions being pinned in memory (though being still linear to the number of write operations).

This demonstrates an inherent limitation of keeping a constant number of versions per object. Our

observation is confirmed by the empirical results shown in Section 6.3.5, where the algorithms

keeping k versions cannot terminate in the runs with a limited heap size.

5.3.2 Impossibility of Space Optimal STM

Definition 8. A responsive MV-permissive STM X is online space optimal, if for any other re-

sponsive MV-permissive STM X ′ and any transactional history H , the number of versions kept by

X at any point of time during H is less than or equal to the number of versions kept by X ′.

Theorem 17. No responsive MV-permissive STM can be online space optimal.
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(b) Removing o13 leads to keeping
the versions of o4 and o5 after they
are overwritten.
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(c) Keeping o13 allows removing the
versions of o4 and o5 after they are
overwritten.

Figure 5.3: No STM can be online space optimal — it is not known at time t0 whether to remove
the version of o3 written by T2.

Proof. The main idea is to construct a transactional history in which any STM that keeps the

minimum number of object versions at a time t0 will keep more than the minimum number of
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object versions at time t1 > t0. Thus, no STM can keep the minimum number of versions at all

times, and so is not online space optimal.

Formally, assume for contradiction that there exists an online space optimal STM X satisfying

responsive MV-permissiveness. Consider the transactional history H depicted in Figure 5.3(a). At

time t0, X should either remove object version o1
3 or keep it. We show that for either one of these

decisions, there exists a responsive MV-permissive STM that keeps fewer versions than X during

H or an extension of H .

Assume first that X keeps o1
3 at time t0. Consider another STM X ′ which behaves the same

as X until time t0, but GCs o1
3 as soon as T4 performs its write to o3. Then X ′ keeps fewer object

versions than X . It remains to show that X ′ does not violate MV-permissiveness by GCing o1
3.

Notice that it suffices to show that at time t0, all active read-only transactions, namely T1 and T3,

can commit. Now, T1’s first read step precedes T2’s first write step. Thus, T1 cannot read o1
3 when

invoking a read operation of o3. X is MV-permissive, hence there exists a version ox3 6= o1
3, which

is kept by X at time t0 and which can be read by T1. Other than removing version o1
3, X and X ′

are the same — T1 can read ox1 when invoking a read operation of o3. Also, T3 can return o3
2, by

serializing T3 after T4. So both T1 and T3 can commit after X ′ removes o3
1, and so X ′ satisfies

MV-permissiveness. Thus, X is not online space optimal.

Next, suppose that o1
3 is GCed at time t0. Consider the transactional history H1 depicted in

Figure 5.3(b), which extends H . We claim that the second step of T3 cannot read o0
3. Indeed,

T3 starts after T2 finished, and T2’s second step overwrote o0
3. So, T3’s second step must read o2

3,

and so T4 precedes T3 in any strict serialization. Also, T3 precedes T5 in any strict serialization,

because the first step of T3 does not read o1
1. From this, we get that the third and fourth steps of T3

must read o1
4 and o1

5, resp. So, these object versions cannot be GCed at time t1. Now, to show that

X is not online space optimal, consider another STM X ′ that keeps o1
3 at time t0, but GCs o1

4 and

o1
5 at time t0. We claim that X ′ satisfies MV-permissiveness. Again, it suffices to show the active

read-transactions T1 and T3 at time t0 can commmit. Indeed, T1’s second and third steps read o0
4

and o0
5, resp., so T1 can commit. Also, T3’s second, third and fourth steps can read o1

3, o0
4 and o0

5,

resp., by serializing T3 after T2, and so T3 can also commit. This is illustrated in Figure 5.3(c).

Thus, X ′ satisfies MV-permissiveness. So, since X ′ keeps 6 object versions at t1 and X keeps 7,

X is not online space optimal.
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5.3.3 Useless-Prefix GC

Though we have just seen that no responsive MV-permissive STM is online space optimal, we

would still like an STM to garbage collect as many old versions as it can. To this end, we define

the following.

Definition 9. An MV-permissive STM satisfies useless-prefix (UP) GC if at any point in a transac-

tional history H , an object version oji is kept only if there exists an extension of H with an active

transaction Ti, such that (1) Ti can read oji , and (2) Ti cannot read any version written after oji .

In other words, an STM satisfying UP GC, removes the longest possible prefix of versions for

each object at any point in time and keeps the shortest suffix of versions that might be needed by

read-only transactions.

5.4 Inherent Limitations

In shared memory systems, cache contention due to concurrent memory accesses, and especially

concurrent writes, is a significant performance bottleneck. Thus, it is desirable to try to separate the

memory locations accessed by different transactions as much as possible. One natural requirement

seems to be that transactions that access different transactional objects access only different base

objects. However, we show in this section that MV-permissive STMs cannot satisfy this property.

Another desirable property for an STM is not to update shared memory during read-only trans-

actions. Such STMs are said to use invisible reads. It is easy to show that an STM satisfying

MV-permissiveness and UP GC cannot use invisible reads. Indeed, UP GC requires knowing about

existing read-only transactions, in order to determine which object versions to GC; such knowl-

edge cannot be obtained unless read-only transactions write. In our second result in this section,

we prove a stronger statement. We show that it is not possible for a responsive MV-permissive

STM to perform UP GC, even when we allow read-only transactions to write, and only require that

when such a transaction runs alone, the external configurations before and after the transaction are

the same. This means that read-only transactions must leave some trace of their existence, even

after they have committed. In particular, even keeping active readers lists for the objects [35], or

using non-zero indicators for conflict detection [31] does not suffice.
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5.4.1 Disjoint-Access Parallelism

Theorem 18. A responsive STM satisfying MV-permissiveness cannot be weakly disjoint-access

parallel.

o1
T2

o2

C

T3

T1

C

(a) H1: T1 � T3, T2 must
read the value written by T1.

o1
T2

o2

C

T3

T1

C

(b) H2: T3 � T1, T2 cannot
read the value written by T1.

Figure 5.4: In a weakly DAP STM T1 does not distinguish between H1 and H2 and cannot be
MV-permissive.

Proof. Suppose for contradiction that there exists a responsive STM satisfying MV-permissiveness

that is weakly DAP. Consider the transactional histories in Figure 5.4. In both H1 and H2, transac-

tions T2 and T3 conflict on object o1: T3 writes to o1 and commits, overriding the value read by an

active transaction T2. Note that since an STM is responsive and satisfies MV-permissiveness, T3

neither aborts nor waits for T2’s termination upon a write to o1. We claim the following. (1) The

second step of T2 returns o1
2 in H1. (2) The second step of T2 returns o1

2 in H2. (3) The first step

of T2 returns o0
1 in H2. (4) H2 is not strictly serializable if the first step of T2 returns o0

1, and the

second step returns o1
2. Conclusion (4) contradicts the strict serializability of the STM. So there

is no responsive STM that is both MV-permissive and weakly DAP. In the following, let s1, s2, s3

denote the first steps of T1, T2, T3, resp., and let s′2 denote the second step of T2.

To show (1), note that T1 performs the last write on o2 before the start of T2 in H1. So by strict

serializability, s′2 returns o1
2.

To show (2), we show that H1 and H2 are indistinguishable to thr(T2). We first claim that the

base steps of s1 and s2 in H1 do not contend. Indeed, consider another transactional history H3 in

which T2 commits after its first step s2. T1 and T2 are disjoint-access in H3, so the base steps of s1

and s2 inH3 do not contend. After s2, thr(T1) and thr(T2) do not distinguishH1 fromH3, because

the steps of T2 are not known ahead of time. Thus, the base steps of s1 and s2 in H1 also do not

contend. Next, we claim that the base steps of s1 and s3 in H1 do not contend. This is because T1

and T3 are disjoint-access inH3, so the base steps of s1 and s3 inH3 do not contend. Since thr(T1)
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and thr(T2) do not distinguish H1 from H3 after s3, then thr(T3) does not distinguish them after

s3. So, the base steps of s1 and s3 do not contend in H1. Now, since the base steps for s1, s2 and

s1, s3 in H1 do not contend, then the configuration after the base steps of s3 in H1, and after the

base steps of s1 in H2, are the same. Thus, thr(T2) does not distinguish between H1 and H2. So

since s′2 returns o1
2 in H1, it also returns o1

2 in H2.

(3) is true because s2 occurs before s3 in H2, and so s2 returns o0
1.

To show (4), let S be any legal sequential history that is equivalent to H2. Since s2 returns

o0
1 and s′2 returns o1

2, then T2 �S T3 and T1 �S T2. Also, since T1 starts after T3 commits, then

T3 �S T1. But then T1 �S T2 �S T3 �S T1, which is a contradiction. Thus, H2 is not strictly

serializable.

5.4.2 Read Visibility

Theorem 19. Suppose a responsive STM satisfies MV permissiveness and UP GC. Consider a

read-only transaction whose execution interval does not contain base steps of any other transac-

tion. Then the configuration external to the transaction, immediately before and after the transac-

tion, cannot be the same.

o1
T4

o2

T5

T2T1

C

C

C
T3

C

(a) H1: o12 is GCed, T4 can read o22
and commits.

o1
T4

o2

T5

T2T1

C

C
T3

C A

(b) H2: o12 is GCed, T4 cannot read
o22 and aborts.

Figure 5.5: H1 and H2 are indistinguishable if a read-only transaction T2 does not leave any trace
after its execution.

Proof. Suppose for contradiction that there exists a responsive STM satisfying MV-permissiveness

and UP GC, in which the external configurations before and after a read-only transaction are the

same, when the transaction’s interval does not overlap the steps of any other transaction. Consider

the transactional histories in Figure 5.5. We claim the following. (1) o1
2 is GCed in H1. (2) o1

2

is GCed in H2. (3) T4 aborts in H2. Conclusion (3) is a contradiction, because T4 is a read-only

transaction, and cannot abort because of MV-permissiveness.
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To show (1), first note that the second step of T4 can read o2
2, since this is equivalent to the

legal sequential history T1T2T3T4T5. Also, any read transaction that starts after H1 follows T3 in

real-time, and so it cannot return o1
2. Thus, in every extension of H , an active transaction can read

o2
2 or a later version. So by the definition of UP GC, o1

2 is GCed.

We now show (2). In H1 and H2, T2 is a read-only transaction, and its execution interval does

not contain steps of any other transactions. So by assumption, the external configuration before

and after T2 are the same. Thus, after T2’s second step in H2, the only thread that distinguishes

between H1 and H2 is thr(T2). Note that thr(T2) does not GC o1
2, since o1

2 is the latest version of

o2 during T2’s execution interval. Then, since o1
2 is GCed in H1, it is also GCed in H2.

To show (3), assume for contradiction that T4 commits in H2. Let S be a legal sequential

history equivalent to H2. Since o2
1 is GCed in H2, then T4 must return o2

2 in its second read step.

Thus, we have T3 �S T4. Next, we have T4 �S T5, because T4 does not read o2
1 in its first read step.

We have T5 �S T2, because T2 starts after T5 commits. Finally, we have T2 �S T3, because the

first step of T2 does not return o2
2. Combining the above, we have T2 �S T3 �S T4 �S T5 �S T2,

which is a contradiction. Thus, T4 does not commit in H2, and so the lemma is proved.

5.5 UP Multi-Versioning Algorithm

We present UP Multi-Versioning (UP-MV), a responsive STM algorithm satisfying MV-permissiveness

and UP GC. Section 5.5.1 overviews the principles underlying UP-MV’s design. The data struc-

tures used by UP-MV and its algorithm are described in Section 5.5.2. UP-MV’s properties are

analyzed in Section 5.5.3.

5.5.1 Algorithm Overview and Design Principles

First we explain how the algorithm finds the versions to read and write, and then explain the

garbage collection mechanism.

Versions written and read. As UP-MV satisfies MV-permissiveness, each read-only transaction

commits. Almost all responsive STMs abort an update transaction whenever its read-set is over-

written [47, 29, 69, 35]. Our first design principle mandates that we abort only in such situations:
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Design Principle 1. Update transaction T aborts if and only if one of the objects in its read-set has

been overwritten after being read by T and before T commits.

This rule is trivially checked at commit time by validating that each version in the read-set is

still the latest one. To expedite these checks, we use a global version clock, as in TL2 [29] and

LSA [69]. The clock is incremented by each committed transaction, and object versions are tagged

with its values.

The writes to a transactional object o create a sequence of versions o0, o1, . . .. Like [29, 35, 32],

UP-MV defers the writes to commit time, and does not allow for “write reordering”:

Design Principle 2. When an update transaction commits, it adds a new object version as the latest

one.

Since update transactions abort whenever their read-set is overwritten, they read only the last

object versions. A read-only transaction reads the latest version that it can read without violating

correctness. To specify this, we define the transaction precedence relation recursively as follows:

Tj precedes Ti if:

• Tj terminates before the start of Ti (real-time order);

• Ti reads the value written by Tj (read-after-write);

• Ti writes to object ok, which was previously written to by Tj (write-after-write);

• Ti writes to object ok and Tj reads the version overwritten by Ti (write-after-read); or

• ∃Tk s.t. Ti precedes Tk and Tk precedes Tj .

If Tj precedes Ti, we say that Ti follows Tj . Note that any serialization order must respect the

precedence order. We can now specify which versions are read:

Design Principle 3. Consider a transaction Ti reading object oj . If Ti is an update transaction, it

reads the latest version. Otherwise, let Tk be the earliest update transaction that follows Ti and

writes to oj . Then Ti reads the version of oj overwritten by Tk. If no such Tk exists, Ti reads the

last version of oj .

52



o1
T0

o2

T2

o3

T1

T4

T3
T6T5

C C C

Figure 5.6: Transaction T0 reads the latest object versions it can correctly read: when reading o2 it
accesses o1

2, which was overwritten by T2; when reading o3, it accesses the last version.

For example, in Figure 5.6, when transaction T0 reads o2 it should read o1
2, because this version

is overwritten by T2, which follows T0 and writes to o2. We say that an active transaction Ti is a

potential reader of version oji if Ti precedes oj+1
i .writer and does not precede oji .writer. In order

to maintain the precedence information, UP-MV keeps a graph whose vertices are transactional

descriptors for each transaction, and whose edges correspond to the precedence relations created

by transactional steps during the run.

Note that if a read-only transaction does not conflict with any update transaction, then it has no

following transactions, and therefore reads the last version of every object. Thus, by default, read-

only transactions access the last object versions, which are referenced directly by object handles.

In addition, each read-only transaction should be able to find references to relevant old object

versions. But since, by UP GC, such versions may exist only as long as there are active transactions

that can read them, these versions have to somehow be linked to their potential readers. This leads

to the following design principle:

Design Principle 4. Every read-only transaction T has a map of references from objects to old

versions of which T is a potential reader.

The responsibility for maintaining such maps lies on update transactions: before a committing

update transaction writes to an object, it copies the reference to the overwritten version to all the

maps of its active preceding transactions, (which are the potential readers of that version). The

potential readers are found by traversing the precedence graph. In case the map already includes a

version for this object, the version numbers are compared, and the earlier one is kept.

Garbage Collection. To satisfy the UP GC, an old object version is deleted at time t0 if it cannot

be read by any transaction after t0. By Design Principle 3, version oji may be read if and only if it

has a potential reader. Version oji is deleted at time t0 if it may have no potential readers from t0
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onward. Our algorithm ensures that if there are no potential readers at time t0, then no such readers

may appear after t0.

We deduce the following design rule for garbage collecting old object versions:

Design Principle 5. Every old object version is deleted when its last potential reader terminates.

In addition to removing old object versions, UP-MV’s garbage collection should clean up trans-

actional descriptors of terminated transactions from the precedence graph. As noted above, this

graph is needed to allow committing transactions to copy overwritten versions to their active pre-

ceding transactions. Once a terminated transaction T has no active preceding transactions, its

descriptor become useless. Hence:

Design Principle 6. The descriptor of terminated transaction T is deleted when the last active

preceding transaction of T terminates.

5.5.2 UP-MV’s Data Structures and Algorithm

Memory layout. The data structures used in the algorithm are depicted in Algorithm 3. Trans-

actional objects are accessed via object handles, which point to the last object versions. In order to

facilitate garbage collection, old versions are referenced directly by their potential readers.

Each version keeps a counter of potential readers, potentialCount; when this counter becomes

zero the version is deleted. Additionally, each version keeps the version number, versionNum, as

read from the global clock when the version is written. Each object version also keeps the list of

its current active reading transactions, readers, which is used by update transactions to maintain

precedence information. This is where the algorithm violates read invisibility, as required for UP

GC (see Section 5.4.2).

Each transaction is represented by its transactional descriptor keeping the read-set and the

write-set of the accessed objects. A data structure TxnMap keeps pointers to all the non-GCed

transactions’ descriptors. Some of the transactional descriptors point to each other, forming a

subgraph of the precedence graph. Transactional steps add edges according to read-after-write,

write-after-write, and write-after-read relations. Edges reflecting real-time precedence are added

at startup, as we explain below. The transactional descriptor of a terminated transaction is GCed
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Algorithm 3 UP-MV algorithm data structures.
1: Object Handle oj :
2: Version: latest B latest version of the object

3: Version okj :
4: Data: data B actual data
5: Tid: writerId B Id of the version’s writer
6: int: versionNum B ordered version number of okj
7: TxnDsc[]: readers B current active readers
8: int: potentialCount B the number of active read-only transactions that might need the version in future

9: TxnDsc Ti:
10: {Active, Terminated}: status
11: int: clockVal B global clock at the beginning of transaction
12: 〈Object, Version〉[]: readSet
13: 〈Object, Version〉[]: writeSet
14: TxnDsc[]: prev B immediate predecessors of Ti
15: TxnDsc[]: next B immediate successors of Ti
16: 〈Object, Version〉[]: toRead B if Ti cannot read the latest version of oj , then the legal version is kept in

Ti.toRead[oj]

17: Global Variables:
18: int: globalClock B incremented by committing update txn
19: TxnDsc[]: finished B finished txns that have not been GCed
20: 〈Tid, TxnDsc〉[]: txnMap

once it has no incoming edges. If transaction Ti has no active preceding transactions at the end of

its run, Ti’s descriptor is deleted by Ti itself. Otherwise, Ti’s descriptor is deleted by the last active

transaction preceding Ti when it terminates.

In order to track real-time order, the algorithm maintains a global transaction set finished, which

holds the descriptors of all the terminated transactions that have not been GCed. A transaction T

that cannot GC its descriptor inserts it to this set upon termination, and the descriptor is removed

from finished when it is GCed. Note that finished is always empty in runs without conflicts. When

a new transaction starts, it adds edges from every transaction in finished to itself. The use of this set

is where the algorithm violates the DAP property, as necessary for responsive MV-permissiveness

(see Section 5.4.1). Although the use of a global clock, which is incremented by each committing

transaction, and copied to every written version, also violates DAP, we use it only to optimize

consistency checks, and it is not needed for correctness.

In Figure 5.7, we see the memory layout for the scenario depicted in Figure 5.6: an active

read-only transaction T0 precedes committed transactions T2 . . . T4, so these transactions are not
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Figure 5.7: An example of memory layout: object handles keep last versions only, old versions are
kept as long as they have potential readers, terminated transactions are GCed once they have no
active preceding transactions.

GCed, whereas committed transactions T1, T5, T6, which have no active preceding transactions,

are deleted.

The map of old object versions Ti may read is stored in Ti.toRead. As we show in Section 5.5.3,

if a read-only transaction Ti cannot read the last version of object oj , then Ti.toRead contains a

mapping from oj to the old version that should be read by Ti. In Figure 5.7, the object versions

overwritten by T1 are referenced by its active preceding transaction T0. All other old object ver-

sions are GCed because they have no potential readers.

We now describe an UP-MV algorithm. The description is simplified by the model’s assump-

tion that all the base steps for running a transactional operation appear to execute atomically. In

practice, this atomicity can be achieved by using locks, as is done in TL2 [29], or by lock-free

algorithms [35]. This issue is out of the scope of the paper.

Handling update transactions. The pseudo-code for update transaction Ti is depicted in Algo-

rithms 4 and 5. At startup, transaction Ti saves the value of the global clock in its local variable
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Algorithm 4 UP-MV algorithm for update transaction Ti.
1: Write to oj :
2: if (oj ∈ Ti.writeSet) then update Ti.writeSet[oj]; return
3: localCopy← oj .latest.clone()
4: writeSet[oj]← localCopy
5: update localCopy

6: Read oj :
7: if (oj ∈ Ti.writeSet) then return Ti.writeSet[oj]
8: version← oj .latest
9: if (version.versionNum > Ti.clockVal) then

10: if ¬validateReadSet() then abort
11: clockVal← version.versionNum

B update precedence information
12: lastWriter← txnRepository.get(version.writerId)
13: if (lastWriter 6= ⊥) then addEdge(lastWriter, Ti)

14: version.readers← version.readers ∪Ti
15: readSet[oj]← version
16: return version.data

17: Commit:
18: if ¬validateReadSet() then abort
19: overwritten← ∅ B keep the versions overwritten by Ti
20: globalClock← globalClock + 1
21: foreach oj ∈ Ti.writeSet do:

B update precedence info
22: prevWriter← txnRepository.get(oj .latest.writerId)
23: if (prevWriter 6= ⊥) then addEdge(prevWriter, Ti)
24: foreach Tj ∈ oj .latest.readers do: addEdge(Tj , Ti)

B install the new version
25: oj .latest.potentialReadersCount← 0
26: overwritten[oj]← oj .latest
27: localCopy.versionNum← globalClock
28: oj .latest← localCopy

B pass the overwritten versions to the txns preceding Ti
29: foreach Tj ∈ Ti.prev do:
30: overwrittenVersions(Tj , overwritten)

B delete the unnecessary overwritten versions (have no potential readers)
31: foreach 〈oi, veri〉 ∈ overwritten do:
32: if (veri.potentialCount = 0) then delete veri

clockVal and adds edges from all the descriptors in finished to itself (line 37).

Write operations postpone most of the work till the commit phase; a write operation merely
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Algorithm 5 UP-MV algorithm for update transaction Ti.
33: Startup:
34: Ti.status← Active
35: Ti.clockVal← globalClock
36: foreach Tj ∈ finished do:
37: addEdge(Tj , Ti) B RTO dependence

38: Termination:
39: Ti.status← Terminated
40: finished← finished ∪ Ti
41: GC(Ti)

42: Function GC(Ti)
B remove the transactions with no active preceding transactions

43: if (Ti.prev = ∅) then
44: txnRepository← txnRepository \ Ti
45: finished← finished \ Ti
46: foreach 〈oj , version〉 ∈ Ti.readSet do:
47: version.readers← version.readers \ Ti
48: foreach Tj ∈ Ti.next do:
49: Tj .prev← Tj .prev \ Ti
50: GC(Tj)
51: delete Ti’s descriptor

52: Function validateReadSet()
53: foreach 〈oj , version〉 ∈ Ti.readSet do:
54: if oj .latest 6= version then return false
55: return true

56: Function overwrittenVersions(Tj , overwritten)
57: if (Tj .status = Active) then
58: foreach 〈oi, veri〉 ∈ overwritten do:
59: curVer← Tj .toRead[oi]
60: if (curVer = ⊥ ∨ curVer.versionNum > veri.versionNum)
61: veri.potentialCount++
62: Tj .toRead[oi]← veri
63: foreach Tk ∈ Tj .prev do:
64: overwrittenVersions(Tk, overwritten)

updates the local copy of the object and puts it in its write-set. A read operation may only return

the last version of the object. To that end, the last version’s number is validated. If a read operation

succeeds, Ti updates the precedence information: if the last version’s writer Tj was not GCed, then

Ti adds an edge from Tj to itself.

Transaction Ti commits successfully if and only if no object in its read-set is overwritten after
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being read by Ti and before Ti commits. This is checked similarly to TL2 [29], using the global

clock, and without using precedence information. A commit operation starts by revalidating Ti’s

read-set (line 18). If the validation fails, Ti aborts. Otherwise, Ti executes the following: 1)

increments the global clock; 2) for each oj ∈ Ti.writeSet, Ti adds edges from oj’s writer and

from oj’s readers to itself, and then installs the new version (lines 22–28); and 3) calls the function

overwrittenVersions to update potential readers’ maps with the versions overwritten by Ti (line 30).

The process of updating potential readers with overwritten versions (lines 56–64) is executed

recursively for every preceding transaction. For an active transaction Tj , the overwritten versions

are inserted to its toRead map. If for some object oi, toRead already contains a version of oi, the

version with the smaller versionNum is chosen (lines 59–62). This way, the algorithm guarantees

that a read-only transaction that reads oi accesses the version overwritten by the earliest following

transaction.

When Ti terminates, it adds its descriptor to finished and starts the GC procedure (lines 42–

51). The transactional descriptor may be deleted if it has no incoming edges. Since deleting

one transactional descriptor decreases the number of incoming edges in its successors, the GC

continues recursively with them.

Handling read-only transactions. The pseudo-code for read-only transactions appears in Algo-

rithm 6. To read object oj (lines 3–6), Ti checks whether the object is in toRead. If not, then Ti

reads the last version of oj . Otherwise, Ti reads the version from its toRead list.

When a read-only transaction Ti terminates, it decrements the counter of potential readers for

all the versions in its toRead list. If a version’s number of potential readers becomes zero, the old

object version is deleted (lines 82–84).

5.5.3 Properties

We first show that UP-MV algorithm satisfies the invariant, which describes the contents of toRead

map in the following way:

Invariant 1. Transaction Ti has oji in its toRead map if and only if oji is not oi’s last version and oji
is the latest version that Ti can read without violating correctness.
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Algorithm 6 UP-MV algorithm for read-only transaction Ti.
65: Read oj :
66: if (oj ∈ Ti.readSet) then return readSet[oj].data

B find the version to read
67: if (oj ∈ Ti.toRead) then
68: verToRead← Ti.toRead[oj ]
69: else
70: verToRead← oj .latest

B update precedence information
71: writer← txnRepository.get(verToRead.writerId)
72: if (writer 6= ⊥) then
73: addEdge(writer, Ti)

B pass the overwritten versions to the preceding transactions
74: foreach Tj ∈ Ti.prev do:
75: overwrittenVersions(Tj , Ti.toRead)

76: verToRead.readers← verToRead.readers ∪Ti
77: readSet[oj]← verToRead
78: return verToRead.data

79: Termination:
80: Ti.status← Terminated
81: finished← finished ∪ Ti
82: foreach 〈oj , oldVersion〉 ∈ Ti.toRead do:
83: oldVer.potentialCount← oldVer.potentialCount− 1
84: if (oldVer.potentialCount = 0) then delete oldVersion
85: GC(Ti)

Proof. We proof consists of the following steps: (1) we first show that transaction Ti can read

object version oji without violating correctness if and only if Ti does not precede oji .writer; (2) we

then show that if Sji is the set of committed update transactions following Ti that write to oj , then

Ti’s map contains the first version of oj that is overwritten by a transaction in Sji . Invariant proof

follows directly from step (1) and (2).

In the previous chapter we shown that history H has a legal serialization if and only if its

precedence graph is acyclic. We use this property to prove the following lemma:

Lemma 20. Transaction Ti can read object version oji without violating correctness if and only if

Ti does not precede oji .writer.

Proof. Ti can correctly read oji if and only if the read operation does not create a cycle in the

precedence graph. When Ti reads oji , two new precedence relations are added: (oji .writer, Ti) and
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(Ti, o
j+1
i writer).

(⇒:) If Ti already precedes oji .writer, then adding relation (oji .writer, Ti) creates a cycle in the

precedence graph, so Ti cannot read oji .

(⇐:) The algorithm always installs new versions at the end, so oji .writer precedes oj+1
i .writer.

If Ti does not precede oji .writer, then adding relations (oji .writer, Ti) and (Ti, o
j+1
i .writer) cannot

create a cycle in the precedence graph. Therefore, Ti can read oji if it does not precede oji .writer.

The following lemma can be proven by easy induction on the steps of the algorithm:

Lemma 21. The transactional descriptor graph of UP-MV is at any given time a subgraph of the

precedence graph, which includes a path from every active transaction Ti to each of its followers.

Invariant 2. Let Sji be the set of committed update transactions following Ti that write to oj . If Sji
is empty then Ti’s map contains no mapping for oj . Otherwise, Ti’s map contains the first version

of oj that is overwritten by a transaction in Sji .

Proof. We prove the invariant by showing that it is correct at the beginning of each transaction and

is preserved after each algorithm step. Upon startup, Ti’s map is empty, and Ti does not precede

any other transaction, so Sji = ∅. Hence, the invariant holds.

In order to show that the invariant is preserved after each algorithm’s operation, we show the

following: (1) each change in Ti’s mapping for oj corresponds to a change in Sji , (2) Sji may only

grow during the lifetime of Ti, (3) the invariant is preserved when a new transaction joins Sji . These

three steps together complete the proof.

To show (1), observe that Ti’s mapping for oj changes only in the function overwrittenVersions

(line 62), which operates on Ti’s descriptor as a result of one of two events. First, a transaction Tk

that follows Ti writes to oj and commits (line 30, and recursively, line 62). In this case, Tk ∈ Sji .
Second, an active read-only transaction Tk, which precedes some Tl that writes oj , reads the value

written by one of Ti’s followers (line 75). In this case, Ti starts preceding Tl via Tk, and therefore

Tj ∈ Sji . Each member of Sji writes to oj once, Therefore, every change in Ti’s mapping for oj

corresponds to a change of Sji .

Claim (2) follows directly from the observation that if Ti precedes Tj at time t0, this relation

persists in every extension of the history.

To show (3), we examine all the possible ways for a new transaction to join Sji :
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A transaction Tl that follows Ti writes to oj and commits. In this case, Tl calls overwrittenVer-

sions() (line 30), which traverses recursively all the predecessors of Tl’s descriptor. By Lemma 21,

Ti’s descriptor is a predecessor of Tl’s descriptor, hence overwrittenVersions() is executed with Ti,

and in line 62, it compares Ti’s mapping for oj with the version overwritten by Tj , and chooses the

version with the earlier version number. The invariant is preserved.

A (committed) writer of oj has a new preceding transaction Tl. This happens only when an active

read-only transaction Tk, which precedes Tl, reads a value written by one of Ti’s followers. In this

case, Tk calls overwrittenVersions() (line 75), which traverses recursively all the predecessors of

Tk’s descriptor, including Ti’s descriptor (by Lemma 21). According to the invariant assumption,

Tk’s mapping for oj contains the version of oj that is overwritten by the earliest transaction in Sjk.

This version is compared with Ti’s current mapping for oj in line 62, and the version with the

earlier version number is chosen. Note that if an update transaction Tm ∈ Sjk is not the earliest

one in Sjk, then it cannot be the earliest one in Sji , because Sjk ⊆ Sji . Therefore, the invariant is

preserved.

Invariant 1 follows directly from Lemma 20 and Invariant 2.

Lemma 22. UP-MV is a responsive algorithm that satisfies MV-permissiveness.

Proof. According to the algorithm, neither read-only nor update transactions never wait for other

transactions’ operations meaning that UP-MV is a responsive algorithm.

Update transaction Ti aborts only if the function validateReadSet() returns false, which happens

if an object version in Ti’s read-set is not the latest version of the corresponding object (line 54).

In other words, Ti aborts only if another transaction writes to an object from Ti’s read-set after

Ti’s start — Ti aborts only upon a conflict with another update transaction. Read-only transaction

never aborts. Hence, UP-MV satisfies MV-permissiveness.

Lemma 23. UP-MV satisfies useless prefix GC.

Proof. According to the algorithm a version is deleted if it is overwritten and its counter of poten-

tial readers arrives to 0 (lines 32 and 84). Thus, the overwritten version is kept only if it belongs to

the map of some read-only transaction.
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By Invariant 1, Ti has oji in its toRead map only if oji is the last version Ti can read without

violating correctness. Therefore, oji is kept in memory as long as there exists a transaction that can

read oji and cannot read any other version written after oji .

Lemma 24. UP-MV satisfies strict serializability.

Proof. In order to show that the algorithm satisfies strict serializability we need to show that any

history H of UP-MV has an equivalent sequential history. In order to satisfy this property it is

enough to preserve the precedence graph acyclic (see Chapter 4).

We first show that the transactional descriptors form a correct precedence graph: (1) the edges

corresponding to the real-time order are added in line 37; (2) read-after-write edges are added in

line 13; (3) write-after-read edges are added in line 73; and (4) write-after-write edges are added

in line 23.

It now remains to show that the graph formed by the transactional descriptors remains acyclic

throughout the run. Update transactions have no followers as long as they are active because they

abort on every conflict (lines 10 and 18), and so their steps cannot create a cycle. According to

Invariant 1 and lines 67–70, a read-only transaction reads the latest possible version that does not

create a cycle in the precedence graph.

Therefore, UP-MV algorithm maintains a precedence graph acyclic and satisfies strict serializ-

ability.
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Chapter 6

SMV: Selective Multi-Versioning STM

In this chapter we present Selective Multi-Versioning (SMV), a new STM that reduces the number

of aborts, especially those of long read-only transactions. SMV keeps old object versions as long

as they might be useful for some transaction to read. It is able to do so while still allowing read-

ing transactions to be invisible by relying on automatic garbage collection to dispose of obsolete

versions.

SMV is most suitable for read-dominated workloads, for which it performs better than previous

solutions. It has an up to ×7 throughput improvement over a single-version STM and more than

a two-fold improvement over an STM keeping a constant number of versions per object, while

operating successfully even in systems with stringent memory constraints.

A preliminary version of the work presented in this chapter appears in proceedings of the 25th

International Symposium on Distributed Computing (DISC 2011).

6.1 Introduction

As demonstrated in Chapter 5, maintaining multiple versions in an STM is a challenging task.

While no STM can be space optimal (Section 5.3.2), we proposed a relaxed GC condition called

useless-prefix GC, and developed a theoretical MV-permissive algorithm satisfying this property

(Section 5.5). Unfortunately, useless-prefix GC demands that every read-only transaction must

leave some trace of its existence even after it has committed (Section 5.4.2), which devastates
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STM performance.

In this chapter we present Selective Multi-Versioning (SMV), an STM algorithm that keeps old

object versions that are still useful to potential readers, while allowing read-only transactions to

remain invisible, i.e., having no effect on shared memory. At first glance, combining invisible reads

with effective garbage collection may seem impossible — if read-only transactions are invisible,

then other transactions have no way of telling whether potential readers of an old version still exist!

To circumvent this apparent paradox, we exploit separate GC threads, such as those available in

managed memory systems. Such threads have access to all the threads’ private memories, so that

even operations that are invisible to other transactions are visible to the garbage collector. SMV

ensures that old object versions become garbage collectible once there are no transactions that can

safely read them.

In Section 6.3 we evaluate different aspects of SMV’s performance. We implement SMV in

Java and study its behavior for a number of benchmarks (red-black tree microbenchmark, STM-

Bench7 [44] and Vacation [23]). We compare SMV to a TL2-style single-versioned STM [29],

to a k-versioned variant of the same algorithm, which keeps k versions per object similarly to

LSA [69], and to a simple global read-write lock approach.

We find that SMV is extremely efficient for read-dominated workloads with long-running trans-

actions. For example, in STMBench7 with 64 threads, the throughput of SMV is seven times higher

than that of TL2 and more than double than those of 2- and 8-versioned STMs. Furthermore, in an

application with one thread constantly taking snapshots and the others running update transactions,

neither TL2 nor the k-versioned STM succeeds in taking a snapshot, even when only one concur-

rent updater is running. The performance of SMV remains stable for any number of concurrent

updaters.

We compare the memory demands of the algorithms by limiting Java heap size. Whereas k-

versioned STMs crash with a Java OutOfMemoryException, SMV continues to run, and its

throughput is degraded by less than 25% even under stringent memory constraints.

SMV presents the new approach for keeping multiple versions, which allows read-only trans-

actions to stay invisible and delegates the cleanup task to the already existing GC mechanisms.
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6.2 SMV Algorithm

We present Selective Multi-Versioning, a new object-based STM. The data structures used by SMV

are described in Section 6.2.1 and Section 6.2.2 depicts the algorithm.

6.2.1 Overview of Data Structures

SMV’s main goal is to reduce aborts in workloads with read-only transactions, without intro-

ducing high space or computational overheads. SMV is based on the following design choices:

1) Read-only transactions do not affect the memory that can be accessed by other transactions.

This property is important for performance in multi-core systems, as it avoids cache thrashing is-

sues [32, 69]. 2) Read-only transactions always commit. A read-only transaction Ti observes a

consistent snapshot corresponding to Ti’s start time — when Ti reads object oj , it finds the latest

version of oj that has been written before Ti’s start. 3) Old object versions are removed once there

are no live read-only transactions that can consistently read them. To achieve this with invisible

reads, SMV relies on the omniscient GC mechanism available in managed memory systems.

We now give a brief reminder of such a mechanism. An object can be reclaimed by the garbage

collector once it becomes unreachable from the call stack or global variables. Reachability is a

transitive closure over strong memory references: if a reachable object o1 has a strong reference

to o2, then o2 is reachable as well (strong references are the default ones in Java). In contrast,

weak references [39] do not protect the referenced object from being GCed; an object referenced

by weak references only is considered unreachable and may be removed.

As in other object-based STMs, transactional objects in SMV are accessed via object handles.

An object handle includes a history of object values, where each value keeps a versioned lock [29]

– data structure with a version number and a lock bit. In order to facilitate automatic garbage

collection, object handles in SMV keep strong references only to the latest (current) versions of

each object, and use weak references to point to other versions.

Each transaction is associated with a transactional descriptor, which holds the relevant trans-

actional data, including a read-set, a write-set, status, etc. In addition, transactional descriptors

play an important role in keeping strong references to old object versions, as we explain below.

Version numbers are generated using a global version clock, where transactional descriptors

act as “time points” organized in a one-directional linked list. Upon commit, an update transaction
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Figure 6.1: Transactional descriptor of Tw references the over-written version of o1 (data5). This
way, read-only transaction Tr keeps a reference chain to the versions that have been overwritten
after Tr’s start.

appends its transactional descriptor to the end of the list (a special global variable curPoint points

to the latest descriptor in this list). For example, if the current global version is 100, a committing

update transaction sets the time point value in its transactional descriptor to 101 and adds a pointer

to this descriptor from the descriptor holding 100.

Version management is based on the idea that old object versions are pointed to by the descrip-

tors of transactions that over-wrote these versions (see Figure 6.1). A committing transaction Tw

includes in its transactional descriptor a strong reference to the previous version of every object in

its write set before diverting the respective object handle to the new version.

When a read-only transaction Ti begins, it keeps (in its local variable startTP) a pointer to the
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latest transactional descriptor in the list of committed transactions. This pointer is cleared upon

commit, making old transactional descriptors at the head of the list GCable.

This way, active read-only transaction Tr keeps a reference chain to version oji if this version

was over-written after Tr’s start, thus preventing oji ’s garbage collection. Once there are no active

read-only transactions that started before oji was over-written, this version stops being referenced

and thus becomes GCable .

Figure 6.1 illustrates the commit of an update transaction Tw that writes to object o1 (the use

of readyPoint variable will be explained in Section 6.2.3). In this example, Tw and a read-only

transaction Tr both start at time 9, and hence Tr references the transactional descriptor of time

point 9. The previous update of o1 was associated with version 5. When Tw commits, it inserts its

transactional descriptor at the end of the time points list with value 10. Tw’s descriptor references

the previous value of o1. This way, the algorithm creates a reference chain from Tr to the previous

version of o1 via Tw’s descriptor, which ensures that the needed version will not be GCed as long

as Tr is active.

6.2.2 Basic Algorithm

We now describe the SMV algorithm. For the sake of simplicity, we present the algorithm in this

section using a global lock for treating concurrency on commit — in Section 6.2.3 we show how

to remove this lock.

SMV handles read-only and update transactions differently. We assume that transaction’s type

can be provided to the algorithm beforehand by a compiler or via special program annotations.

If not, each transaction can be started as read-only and then restarted as update upon the first

occurrence of a write operation.

Handling update transactions. The protocol for update transaction Ti is depicted in Algo-

rithm 7. The general idea is similar to the one used in TL2 [29]. An update transaction Ti aborts if

some object oj read by Ti is over-written after Ti begins and before Ti commits. Upon starting, Ti

saves the value of the latest time point in a local variable startTime, which holds the latest time at

which an object in Ti’s read-set is allowed to be over-written.

A read operation of object oj reads the latest value of oj , and then post-validates its version

(function validateRead. The validation procedure checks that the version is not locked and it is not
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Algorithm 7 SMV algorithm for update transaction Ti.

1: Upon Startup:
2: Ti.startTime← curPoint.commitTime

3: Read oj:
4: if (oj ∈ Ti.writeSet)
5: then return Ti.writeSet[oj]
6: data← oj.latest
7: if ¬validateRead(oj) then abort
8: readSet.put(oj)
9: return data

10: Write to oj:
11: if (oj ∈ Ti.writeSet)
12: then update Ti.writeSet.get(oj); return
13: localCopy← oj .latest.clone()
14: update localCopy; writeSet[oj]← localCopy

15: Function validateReadSet
16: foreach oj ∈ Ti.readSet do:
17: if ¬validateRead(oj) then return false
18: return true

19: Commit:
20: foreach oj ∈ Ti.writeSet do: oj .lock()
21: if ¬validateReadSet() then abort

B txn dsc should reference the over-written data
22: foreach oj ∈ Ti.writeSet do:
23: Ti.prevVersions.put(〈oj , oj .latest〉)
24: timeLock.lock()
25: Ti.commitTime← curPoint.commitTime + 1

B update and unlock the objects
26: foreach 〈oj , data〉 ∈ Ti.writeSet do:
27: oj .version← Ti.commitTime
28: oj .weak references.append(oj .latest)
29: oj .latest← data; oj .unlock()
30: curPoint.next← Ti; curPoint← Ti
31: timeLock.unlock()

32: Function validateRead(Object oj)
33: return (¬oj .isLocked ∧ oj .version ≤ Ti.startTime)

greater than Ti.startTime, otherwise the transaction is aborted.

A write operation (lines 12–14) creates a copy of the object’s latest version and adds it to Ti’s
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local write set.

Commit (lines 20–31) consists of the following steps:

1. Lock the objects in the write set (line 20). Deadlocks can be detected using standard mech-

anisms (e.g., timeouts or Dreadlocks [53]), or may be avoided if acquired in the same order

by every transaction.

2. Validate the read set (function validateReadSet).

3. Insert strong references to the over-written versions to Ti’s descriptor (line 23). This way

the algorithm guarantees that the over-written versions stay in the memory as long as Ti’s

descriptor is referenced by some read-only transaction.

4. Lock the time points list (line 24). Recall that this is a simplification; in Section 6.2.3 we

show how to avoid such locking.

5. Set the commit time of Ti to one plus the value of the commit time of the descriptor refer-

enced by curPoint.

6. Update and unlock the objects in the write set (lines 26–29). Set their new version numbers

to the value of Ti.commitTime. Keep weak references to old versions.

7. Insert Ti’s descriptor to the end of the time points list and unlock the list (line 30).

Algorithm 8 SMV algorithm for read-only transaction Ti.
1: Upon Startup:
2: Ti.startTP← curPoint

3: Read oj:
4: latestData← oj .latest
5: if (oj .version ≤ Ti.startTP.commitTime) then return latestData
6: return the latest version ver in oj .weak references, s.t.
7: ver.version ≤ Ti.startTP.commitTime

8: Commit:
9: Ti.startTP← ⊥

Handling read-only transactions. The pseudo-code for read-only transactions appears in Al-

gorithm 8. Such transactions always commit without waiting for other transactions to invoke any
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operations. The general idea is to construct a consistent snapshot based on the start time of Ti.

At startup, Ti.startTP points to the latest installed transactional descriptor (line 2); we refer to the

time value of startTP as Ti’s start time.

For each object oj , Ti reads the latest version of oj written before Ti’s start time. When Ti reads

an object oj whose latest version is greater than its start time, it continues to read older versions

until it finds one with a version number older than its start time. Some old enough version is

guaranteed to be found, because the updating transaction Tw that over-wrote oj has added Tw’s

descriptor referencing the over-written version somewhere after Ti’s starting point, preventing GC.

The commit procedure for read-only transactions merely removes the pointer to the starting

time point, in order to make it GCable, and always commits.

6.2.3 Allowing Concurrent Access to the Time Points List

We show now how to avoid locking the time points list (lines 24, 31 in Algorithm 7), so that update

transactions with disjoint write-sets may commit concurrently.

We first explain the reason for using the lock. In order to update the objects in the write-set,

the updating transaction has to know the new version number to use. However, if a transaction

exposes its descriptor before it finishes updating the write-set, then some read-only transaction

might observe an inconsistent state. Consider, for example, transaction Tw that updates objects o1

and o2. The value of curPoint at the beginning of Tw’s commit is 9. Assume Tw first inserts its

descriptor with value 10 to the list, then updates object o1 and pauses. At this point, o1.version =

10, o2.version < 10 and curPoint→ commitTime = 10. If a new read-only transaction starts with

time 10, it can successfully read the new value of o1 and the old value of o2, because they are both

less than or equal to 10. Intuitively, the problem is that the new time point becomes available to the

readers as a potential starting time before all the objects of the committing transaction are updated.

To preserve consistency without locking the time points list, we add an additional boolean

field ready to the descriptor’s structure, which becomes true only after the committing transaction

finishes updating all objects in its write-set. In addition to the global curPoint variable referencing

the latest time point, we keep a global readyPoint variable, which references the latest time point

in the ready prefix of the list (see Figure 6.1).

When a new read-only transaction starts, its startTP variable references readyPoint. In the
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example above, a new transaction Tr begins with a start time equal to 9, because the new time point

with value 10 is still not ready. Generally, the use of readyPoint guarantees that if a transaction

reads an object version written by Tw, then Tw and all its preceding transactions had finished

writing their write-sets.

Note, however, that when using ready points we should not violate the real time order — if a

read-only transaction Tr starts after Tw terminates, then Tr must have a start time value not less

than Tw’s commit time. This property might be violated if update transactions become ready in an

order that differs from their time points order, thus leaving an unready transaction between ready

ones in the list.

We have implemented two approaches to enforce real-time order: 1) An update transaction

does not terminate until the ready point reaches its descriptor. A similar approach was previously

used by RingSTM [73] and JVSTM [34]. 2) A new read-only transaction notes the time point

of the latest terminated transaction and then waits until the readyPoint reaches this point before

starting. Note that unlike the first alternative, read-only transactions in the second approach are not

wait-free.

According to our evaluation, both techniques demonstrate similar results. The waiting period

remains negligible as long as the number of transactional threads does not exceed the number of

available cores; when the number of threads is two times the number of cores, waiting causes

a 10 − 15% throughput degradation (depending on the workload) — this is the cost we pay for

maintaining real-time order.

6.3 Implementation and Evaluation

6.3.1 Compared Algorithms

Our evaluation aims to check the aspect of keeping and garbage collecting multiple versions. Direct

comparison was difficult because of different frameworks the algorithms are implemented in1. We

implement the following algorithms:

• SMV– The algorithm described in Section 6.2.

1DeuceSTM [52] framework comes with TL2 and LSA built-in, however, its LSA implementation is single-
versioned.

72



• TL2– Java implementation of TL2 [29] with a single central global version clock. We use a

standard optimization of not keeping a read-set for read-only transactions. The code follows

the style of TL2 implementation in Deuce framework [52].

• TL2 with time points– A variant of TL2, which implements the time points mechanism

described in Section 6.2.1. This way, we check the influence of the use of time points on

overall performance and separate it from the impact of multi-versioning techniques used in

SMV.

• k-versioned– an STM based on a TL2-style’s logic and code, in which each object keeps

a constant k, number of versions (this approach resembles LSA [69]). Reads operate as in

SMV, except that if no adequate version is found, the transaction aborts. Updates operate as

in TL2.

• Read-Write lock (RWLock)– a simple global read-write lock. The lock is acquired at the

beginning of an atomic section and is released at its end.

We use the Polite contention manager with exponential backoff [71] for all the algorithms:

aborted transactions spin for a period of time proportional to 2n, where n is the number of retries

of the transaction.

It is worth noting that our implementation of the TL2-style algorithm does not use all the

software optimizations that might be used in the original one. Our aim is to create for all the

algorithms as similar a starting point as possible. This way, the tests evaluate the algorithmic

differences, while minimizing the influence of the engineering optimizations and tweaks. These

may certainly be applicable to each of the compared alternatives.

6.3.2 Experiment Setup

All algorithms are implemented in Java. We use the following benchmarks for performance evalua-

tion: 1) a red-black tree microbenchmark; 2) the Java version of STMBench7 [44]; and 3) Vacation,

which is part of the STAMP [23] benchmark suite.

Red-black tree microbenchmark. The red-black tree supports insertion, deletion, query and

range query operations. The initial size of the tree is 400000 nodes. It is checked both for read-
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dominated workloads (80/20 ratio of read-only to update operations) and for workloads with up-

date operations only.

STMBench7. STMBench7 aims to simulate different behaviors of real-world programs by in-

voking both read-only and update transactions of different lengths over large data structures, typ-

ically graphs. Workload types differ in their ratio of read-only to update transactions: 90/10 for

read-dominated workloads, 60/40 for read-write workloads, and 10/90 for write-dominated work-

loads. Operation types for both read-only and update transactions include graph traversals of dif-

ferent lengths, structural modifications, and single access operations. When running STMBench7

workloads, we bound the length of each benchmark by the number of transactions performed by

each thread (2000 transactions per thread unless stated otherwise). We manually disabled long

update traversals because they inherently eliminate any potential for scalability.

Vacation (Java port). Vacation [23], emulates a travel reservation system, which is implemented

as a set of trees. In our experiments it is run with the standard parameters corresponding to

vacation-high++. Note that STAMP benchmarks are not suitable for evaluating techniques

that optimize read-only transactions, because these benchmarks do not have read-only transactions

at all. We use Vacation as one exemplary STAMP application to evaluate SMV’s overhead.

Setup. In all our benchmarks, we defined transactional objects at the granularity of graph/data

structure nodes. This provides a reasonable compromise between the cost of copy-on-write and

the overhead of algorithmic bookkeeping. To support this, we re-implemented collections based

on java.util.

The benchmarks are run on a dedicated shared-memory NUMA server with 8 Quad Core AMD

2.3GHz processors and 16GB of memory attached to each processor. The system runs Linux

2.6.22.5-31 with swap turned off. For all tests but those with limited memory, JVM is run with the

AggressiveHeap flag on. Thread scheduling is left entirely to the OS. We run up to 64 threads

on the 32 cores.

Our evaluation study is organized as follows: in Section 6.3.3, we show system performance

measurements. Section 6.3.4 considers the latency and predictability of long read-only operations,

and in Section 6.3.5, we analyze the memory demands of the algorithms.

74



6.3.3 Performance Measurements

SMV overhead. As we mentioned earlier, the use of multiple versions in our algorithm can

be exploited by read-only transactions only. However, before evaluating the performance of SMV

with read-only transactions, we first want to understand its behavior in programs with update trans-

actions only. In these programs, SMV can hardly be expected to outperform its single-versioned

counterparts. For update transactions, SMV resembles the behavior of TL2, with the additional

overhead of maintaining previous object versions. Thus, measuring throughput in programs with-

out read-only transactions quantifies the cost of this additional overhead.

In Figure 6.2, we show throughput measurements for write-dominated benchmarks: Red-black

tree (Figure 6.2(a)) and Vacation (Figure 6.2(c)) do not contain read-only transactions at all. The

write-dominated STMBench7 workload shown in Figure 6.2(b) runs 90% of its operations as up-

date transactions, and therefore the influence of read-only ones is negligible.

All compared STM algorithms show similar behavior in all three benchmarks. This emphasizes

the fact that the algorithms take the same approach when executing update transactions and that

they all have a common underlying code platform. The differences in the behavior of RWLock are

explained by different contention levels of the benchmarks. While the contention level in Vacation

remains moderate even for 64 threads, contention in the write-dominated STMBench7 is extremely

high, so that RWLock outperforms the other alternatives.

Figure 6.2 demonstrates low overhead of SMV when the number of threads does not exceed 32;

for 64 threads this overhead causes a 15% throughput drop. This is the cost we pay for maintaining

multiple versions when these versions are not actually used.

Throughput. We next run workloads that include read-only transactions, in order to assess

whether the overhead of SMV is offset by its smaller abort rate. In Figure 6.3 we depict through-

put measurements of the algorithms in STMBench7’s read-dominated and read-write workloads,

as well as the throughput of the red-black tree. We see that in the read-dominated STMBench7

workload, SMV’s throughput is seven times higher than that of TL2. Despite keeping as many as

8 versions, the k-versioned STM cannot keep up, and SMV outperforms it by more than twice.

What is the reason for 8 versions not being enough? The results presented in Figure 6.4 give the

explanation. In this figure we compare the average probability of accessing an old object version in

a read-write workload of STMBench7 with the work that might be lost because some kth version
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Figure 6.2: In the absence of read-only transactions multi-versioning cannot be exploited. The
overhead of SMV degrades throughput by up to 15%.

is absent. We can see that the probability of accessing an old version of some random object is

extremely small (less than 1.2% even for the second version). Therefore, keeping k versions for

each object can be wasteful. However, the amount of work lost because the kth version is absent,

is surprisingly high even for large k values. Intuitively, this occurs since a transaction that needs

to access the kth version of an object must have been running for a long time, and the price of

aborting such a transaction is high. Hence, keeping previous versions is important, especially for

the frequently updated objects; keeping a constant number of versions per object will typically not

be enough for reducing the amount of wasted work.
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(b) Throughput in STMBench7’s read-write workload.
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Figure 6.3: By reducing aborts of read-only transactions, SMV presents a substantially higher
throughput than TL2 and the k-versioned STM. In read-dominated workloads, its throughput is
×7 higher than that of TL2 and more than twice those of the k-versioned STM with k = 2 or
k = 8. In read-write workloads its advantage decreases because of update transactions, but SMV
still clearly outperforms its competitors.

We further note that SMV is scalable, and its advantage over a single-version STM becomes

more pronounced as the number of threads rises. In the read-write workload, the number of read-

only transactions that can use multiple versions decreases, and the throughput gain becomes 95%

over TL2 and 52% over the 8-versioned STM.

We conclude that in the presence of read-only transactions the benefit of SMV significantly
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Figure 6.4: The average probability of accessing an old version is small – keeping old versions
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Figure 6.5: Time spent in aborted transactions in STMBench7’s read-dominated workload.

outweighs its overhead. This benefit can be explained by looking at the amount of time wasted on

eventually aborted transactions (Figure 6.5). This approach approximates net CPU utilization and

hence explains throughput results. We note that this approximation works well only if the number

of threads is less than or equal to the number of available cores (otherwise, time measurements also

count intervals in which the threads are suspended). We see that in the read-dominated workload,

TL2 spends more than 80% of its time running aborted transactions! Interestingly, k-versioned

STMs cannot fully alleviate this effect either, succeeding to reduce the amount of wasted time to
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Number of threads
1 4 8 16 32

TL2 1.3 21.6 68.5 103.6 358.5
SMV 1.3 1.4 2.4 3.6 11.9
2-versioned 1.3 4.1 22.9 45.2 204.5
8-versioned 1.3 6.8 10.6 22.2 79.4

Table 6.1: Maximum time (sec) for completing a long read-only operation in STMBench7 is hardly
predictable for TL2 and k-versioned STMs: it might arrive to hundreds of seconds under high
loads. SMV presents stable performance unaffected by the level of contention.

36% only. In contrast, SMV’s wastage does not rise above 3%.

It is possible to employ timestamp extension [69, 33] to reduce the amount of wasted work in

both TL2 and SMV. However, this approach requires read-only transactions to maintain read-sets.

The overhead of keeping a read-set is significant for long read-only transactions. We implemented

timestamp extension in both TL2 and SMV, and our experiments showed that it did not improve

the performance of either algorithm, although it did reduce the amount of wasted work. For space

imitations, we omit these results.

6.3.4 Latency and Predictability of Long Read-Only Operations

In the previous section we concentrated on overall system performance without considering spe-

cific transactions. However, in real-life applications the completion time of individual operations is

important as well. In this section we consider two examples: taking system snapshots of a running

application and STMBench7’s long traversals.

Taking a full-system snapshot is important in various fields: it is used in client-server fi-

nance applications to provide clients with consistent views of the state, for checkpointing in high-

performance computing, for creating new replicas, for application monitoring and gathering statis-

tics, etc. Predictability of the time it takes to complete the snapshot is important, both for program

stability and for usability.

We first show the maximum time for completing a long read-only traversal, which is already

built-in in STMBench7 (see Table 6.1). As we can see from the table, this operation takes only

several seconds when run without contention. However, when the number of threads increases,

completing the traversal might take more than 100 seconds in TL2 and k-versioned STMs. Un-
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Number of threads
1 4 8 16 32

TL2 — — — — —
SMV 1.4 1.3 1.2 1.4 1.5
2-versioned — — — — —
8-versioned — — — — —

Table 6.2: Maximum time (sec) to take a snapshot in Vacation benchmark. Vacation snapshot
operation run by TL2 or k-versioned algorithms cannot terminate even when there is only a single
application thread, while SMV presents stable performance.

like those algorithms, SMV is less impacted by the level of contention and it always succeeds to

complete the traversal in several seconds.

Next, we added the option of taking a system snapshot in Vacation. In addition to the orig-

inal application threads, we run a special thread that repeatedly tries to take a snapshot. We are

interested in the maximum time it takes to complete the snapshot operation. The results appear

in Table 6.2. We see that neither TL2 nor the k-versioned STM can successfully take a snapshot

even when only a single application thread runs updates in parallel with the snapshot operation.

Surprisingly, even 8 versions do not suffice to allow snapshots to complete, this is because within

the one and a half seconds it takes the snapshot to complete some objects are overwritten more

than 8 times.

On the other hand, the performance of SMV remains stable and unaffected by the number of

application threads in the system. We conclude that SMV successfully keeps the needed versions.

In Section 6.3.5, we show that it does so with smaller memory requirements than the k-versioned

STM.

We would like to note that while taking a snapshot is also possible by pausing mutator threads,

this approach is much less efficient, as it requires quiescence periods and thus reduces the overall

throughput.

6.3.5 Memory Demands

One of the potential issues with multi-versioned STMs is their high memory consumption. In

this section we compare memory demands of the different algorithms. To this end, we execute

long-running write-dominated STMBench7 benchmarks (64 threads, each thread running 40000
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Memory limit
2GB 4GB 8GB 12GB 16GB

TL2 606.89 631.56 630.3 674.96 647.17
SMV 450.12 543.04 563.74 595.78 602.01
2-versioned — 515.32 532.7 550.61 533.01
4-versioned — — — — 281.98
8-versioned — — — — —

Table 6.3: Throughput (txn/sec) in limited memory systems: k-versioned STMs do not succeed to
complete the benchmark.

operations) with different limitations on the Java memory heap. Such runs present a challenge for

the multi-versioned STMs because of their high update rate and limited memory resources. As

we recall from Section 6.3.3, multi-versioned STMs cannot outperform TL2 in a write-dominated

workload. Hence, the goal of the current experiment is to study the impact of the limited memory

availability on the algorithms’ behaviors.

Figure 6.3 shows how the algorithms’ throughput depends on the Java heap size. A “—” sign

corresponds to runs in which the algorithm did not succeed to complete the benchmark due to

a Java OutOfMemoryException. Notice that the 8-versioned STM is unable to successfully

complete a run even given a 16GB Java heap size. Decreasing k to 4, and then 2, makes it possible

to finish the runs under stricter constraints. However, none of the k-versioned STMs succeed

under the limitation of 2GB. Unlike k-versioned STMs, SMV continues to function under these

constraints. Furthermore, SMV’s throughput does not change drastically — the maximum decrease

is 25% when Java heap size shrinks 8-fold.

The collapse of the k-versioned STM confirms the observation from Section 5.3.1, where we

have illustrated that its memory consumption can become exponential rather than linear in the

number of transactional objects.

In Table 6.4 we show the relative amount of time spent garbage collecting unreferenced data

(we use a standard throughput “stop the world” garbage collector, hence, the application threads

do not run during this time). As we mentioned above, k-versioned STMs were simply unable to

complete the benchmark. As expected, the GC share when running SMV is clearly higher than that

of TL2 — 8% versus 2% in the less constrained runs. Under the stringent constraints, the GC takes

a significant share of the time (30%). This is the cost we pay for collecting old object versions in a

sophisticated way: transactional descriptors might form long chains of time points that complicate

81



Memory limit
2GB 4GB 8GB 12GB 16GB

TL2 0.10 0.04 0.03 0.02 0.02

SMV 0.30 0.13 0.09 0.08 0.08

2-versioned — 0.06 0.03 0.03 0.02

4-versioned — — — — 0.46

8-versioned — — — — —

Table 6.4: Time spent in GC: k-versioned STMs do not succeed to complete the benchmark, SMV
spends ≈ 10% of the time in GC when the memory limitation is above 2GB.

the task of the garbage collector.
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Chapter 7

SALSA: Scalable and Low Synchronization

NUMA-aware Algorithm for

Producer-Consumer Pools

This chapter presents a highly-scalable producer-consumer task pool, designed with a special em-

phasis on lightweight synchronization and data locality. The core building block of our pool is

SALSA, Scalable And Low Synchronization Algorithm for a single-consumer container with task

stealing support. Each consumer operates on its own SALSA container, stealing tasks from other

containers if necessary. We implement an elegant self-tuning policy for task insertion, which does

not push tasks to overloaded SALSA containers, thus decreasing the likelihood of stealing.

SALSA manages large chunks of tasks, which improves locality and facilitates stealing. SALSA

uses a novel approach for coordination among consumers, without strong atomic operations or

memory barriers in the fast path. It invokes only two CAS operations during a chunk steal.

Our evaluation demonstrates that a pool built using SALSA containers scales linearly with the

number of threads and significantly outperforms other FIFO and non-FIFO alternatives.

The task pool presented in this chapter lacks the ability of identifying the emptiness of a con-

tainer: a task retrieval is blocked as long as no task can be found. The extension of the work

described in this chapter, which presents the non-blocking linearizable task pool, appears in pro-

ceedings of the 24th ACM Symposium on Parallelism and Architectures (SPAA’12) and is fully

described in the technical report [38].
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7.1 Introduction

The producer-consumer pool is a fundamental data structure consisting of an unordered collection

of objects. Pools have a number of important applications in multiprocessor computing, e.g.,

transferring tasks in a parallel computation. It is thus highly important to ensure that such a pool

does not become a bottleneck when concurrently accessed by large number of threads.

One of the common approaches to implement a producer-consumer pool is using FIFO/LIFO

queues. However, this approach inherently suffers from poor scalability and high synchronization

costs [3, 14, 74]. In addition, FIFO/LIFO properties of the queues cannot be used in practice if

multiple consumers work on the same queue simultaneously. This happens because every con-

sumer can be suspended by the OS scheduler for an unbounded period of time after retrieving a

task. This way, a task can be “bypassed” by an arbitrary number of later tasks before actually being

consumed. Hence, even if a multi-consumer queue guarantees an order on task retrieval, no simple

way exists to exploit such an order.

This chapter presents a non-FIFO scalable and highly-efficient task pool, with lightweight

synchronization-free operations in the common case. Its data allocation scheme is cache-friendly

and highly suitable for NUMA environments. Moreover, our pool is robust in the face of imbal-

anced loads and unexpected thread stalls.

Our system is composed of two independent logical entities: 1) SALSA, Scalable and Low

Synchronization Algorithm, a single-consumer pool that exports a stealing operation, and 2) a work

stealing framework implementing a management policy that operates multiple SALSA pools.

In order to improve locality and facilitate stealing, SALSA keeps tasks in chunks, organized in

per-producer chunk lists. Only the producer mapped to a given list can insert tasks to chunks in

this list, which eliminates the need for synchronization among producers.

Though each consumer has its own task pool, inter-consumer synchronization is required in

order to allow stealing. The challenge is to do so without resorting to costly atomic operations

(such as CAS or memory fences) upon each task retrieval. We address this challenge via a novel

chunk-based stealing algorithm that allows consume operations to be synchronization-free in the

common case, when no stealing occurs, which we call the fast path. Moreover, SALSA reduces

the stealing rate by moving entire chunks of tasks in one steal operation, which requires only two

CAS operations.
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In order to achieve locality of memory access on a NUMA architecture, SALSA chunks are

kept in the consumer’s local memory. The management policy matches producers and consumers

according to their proximity, which allows most task transfers to occur within a NUMA node.

In many-core machines running multiple applications, system behavior becomes less pre-

dictable. Unexpected thread stalls may lead to an asymmetric load on consumers, which may in

turn lead to high stealing rates, hampering performance. SALSA employs a novel auto-balancing

mechanism that has producers insert tasks to less loaded consumers, and is thus robust to spurious

load fluctuations.

We have implemented SALSA in C++, and tested its performance on a 32-core NUMA ma-

chine. Our experiments show that the SALSA-based work stealing pool scales linearly with the

number of threads; it is 20 times faster than other work-stealing alternatives, and shows a signifi-

cant improvement over state-of-the-art non-FIFO alternatives. SALSA-based pools scale well even

in unbalanced scenarios.

The rest of this chapter proceeds as follows. Section 7.2 describes the system overview. The

SALSA single-consumer algorithm is described in Section 7.3, we then discuss our implementation

and experimental results in Section 7.4.

7.2 System Overview

SCPool 1

Memory 1
CPU1

cons 1 prod 1 SCPool 3

Memory 2
CPU2

cons 3prod 3

interconnect

SCPool 2
cons 2 prod 2

SCPool 4
cons 4prod 4

d l lProd 2 access list: 
cons2, cons1, cons3, cons4

Cons 4 access list: 
cons3, cons1, cons2

Figure 7.1: Producer-consumer framework overview. In this example, there are two processors
connected to two memory banks (NUMA architecture). Two producers and two consumers running
on each processor, and the data of each consumer is allocated at the closest physical memory. A
producer (consumer) has a sorted access list of consumers for task insertion (respectively stealing).
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In the current section we present our framework for scalable and NUMA-aware producer-

consumer data exchange. Our system follows the principle of separating mechanism and policy.

We therefore consider two independent logical entities:

1. A single consumer pool (SCPool) mechanism manages the tasks arriving to a given consumer

and allows tasks stealing by other consumers.

2. A management policy operates SCPools: it routes producer requests to the appropriate con-

sumers and initiates stealing between the pools. This way, the policy controls the system’s

behavior according to considerations of load-distribution, throughput, fairness, locality, etc.

We are especially interested in a management policy suitable for NUMA architectures (see

Figure 7.1), where each CPU has its own memory, and memories of other CPUs are ac-

cessed over an interconnect. As a high rate of remote memory accesses can decrease the

performance, it is desirable for the SCPool of a consumer to reside close to its own CPU.

Algorithm 9 API for a Single Consumer Pool with stealing support.
1: boolean: produce(Task, SCPool) B Tries to insert the task to the pool, returns false if no space is

available.
2: void: produceForce(Task, SCPool) B Insert the task to the pool, expanding the pool if necessary.
3: {Task ∪⊥}: consume() B Retrieve a task from the pool, returns ⊥ if no tasks in the pool are detected.
4: {Task ∪⊥}: steal(SCPool from) B Try to steal a number of tasks from the given pool and move them to

the current pool. Return some stolen task or ⊥.

SCPool abstraction. The SCPool API provides the abstraction of a single consumer task pool

with stealing support, see Algorithm 9. A producer invokes two operations: produce(), which

attempts to insert a task to the given pool and fails if the pool is full, and produceForce(), which

always succeeds by expanding the pool on demand. There are also two ways to retrieve a task from

the pool: the owner of the pool (only) can call the consume() function; while any other thread can

invoke steal(), which tries to transfer a number of tasks between two pools and return one of the

stolen tasks.

A straightforward way to implement the above API is using dynamic-size multi-producer multi-

consumer FIFO queue (e.g., Michael-Scott queue [58]). In this case, produce() enqueues a new

task, while consume() and steal() dequeue a task. In the next section we present SALSA, a much

more efficient SCPool.
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Algorithm 10 Work stealing framework pseudo-code.
5: Local variables:
6: SCPool myPool B The consumer’s pool
7: SCPool[] accessList B The consumer’s or producer’s access list

8: Function get():
9: while(true)

10: B First try to get a task from the local pool
11: t← myPool.consume()
12: if (t 6= ⊥) return t
13: B Failed to get a task from the local pool – steal
14: foreach SCPool p in accessList in order do:
15: t← p.steal()
16: if (t 6= ⊥) return t

B No tasks found – start over again

17: Function put(Task t):
18: B Produce to the pools by the order of the access list
19: foreach SCPool p in accessList in order do:
20: if (p.produce(t)) return
21: firstp← the first entry in accessList
22: B If all pools are full, expand the closest pool
23: produceForce(t,firstp)
24: return

Management policy. A management policy defines the way in which: 1) a producer chooses

an SCPool for task insertion; and 2) a consumer decides when to retrieve a task from its own

pool or steal from other pools. Note that the policy is independent of the underlying SCPool

implementation. We believe that the policy is a subject for engineering optimizations, based on

specific workloads and demands.

In the current work, we present a NUMA-aware policy. If the individual SCPools themselves

are lock-free, then our policy preserves lock-freedom at the system level. Our policy is as follows:

• Access lists. Each process in the system (producer or consumer) is provided with an access

list, an ordered list of all the consumers in the system, sorted according to their distance from

that process (see Figure 7.1). Intuitively, our intention is to have a producer mostly interact

with the closest consumer, while stealing mainly happens inside the same processor node.

• Producer’s policy. The producer policy is implemented in the put() function in Algo-

rithm 10. The operation first calls the produce() of the first SCPool in its access list. Note
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that this operation might fail if the pool is full, (which can be seen as evidence of that the

corresponding consumer is overloaded). In this case, the producer tries to insert the task

into other pools, in the order defined by its access list. If all insertions fail, the producer

invokes produceForce() on the closest SCPool, which always succeeds (expanding the pool

if needed).

• Consumer’s policy. The consumer policy is implemented in the get() function in Algo-

rithm 10. A consumer takes tasks from its own SCPool. If its SCPool is empty, then the

consumer tries to steal tasks from other pools in the order defined by its access list. Stealing

serves two purposes: first, it is important for distributing the load among all available con-

sumers. Second, it ensures that tasks are not lost in case they are inserted into the SCPool

of a crashed (or very slow) consumer. Checking emptiness of a container is a subtle issue

and we do not handle it in the current thesis (get() operation is blocked as long as it cannot

find a task to retrieve). Emptiness detection is rigorously described in the full version of this

work [38], which devises a non-blocking linearizable task pool algorithm.

7.3 Algorithm Description

In the current section we present the SALSA SCPool. We first show the data structures of SALSA

in Section 7.3.1, and then present the basic algorithm without stealing support in Section 7.3.2.

The stealing procedure is described in Section 7.3.3, finally, the role of chunk pools is presented

in Section 7.3.4. For the simplicity of presentation, in this section we assume that the the memory

accesses satisfy sequential consistency [55], we describe the ways to solve memory reordering

issues in Section 7.4.1.

7.3.1 SALSA Structure

The SALSA data structure of a consumer ci is described in Algorithm 11 and partially depicted

in Figure 7.2. The tasks inserted to SALSA are kept in chunks, which are organized in per-producer

chunk lists. Only the producer mapped to a given list can insert a task to any chunk in that list.

Every chunk is owned by a single consumer whose id is kept in the owner field of the chunk. The

owner is the only process that is allowed to take tasks from the chunk; if another process wants to
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Algorithm 11 SALSA implementation of SCPool: Data Structures.

25: Chunk type
26: Task[CHUNK SIZE] tasks
27: int owner B owner’s consumer id
28: Node type
29: Chunk c; initially ⊥
30: int idx; initially -1
31: Node next;

32: SALSA per consumer data structure:
33: int consumerId
34: List〈Node〉[] chunkLists B one list per producer + extra list for stealing (every list is single-writer multi-

reader)
35: Queue〈Chunk〉 chunkPool B pool of spare chunks
36: Node currentNode, initially ⊥ B current node to work with

take a task from the chunk, it should first steal the chunk and change its ownership. A task entry

in a chunk is used at most once. Its value is ⊥ before the task is inserted, and TAKEN after it has

been consumed.

The per-producer chunk lists are kept in the array chunkLists (see Figure 7.2), where chun-

kLists[j] keeps a list of chunks with tasks inserted by producer pj . In addition, the array has a

special entry chunkLists[steal], holding chunks stolen by ci. Every list has a single writer who

can modify the list structure (add or remove nodes): chunkLists[j]’s modifier is the producer pj ,

while chunkLists[steal]’s modifer is the SCPool’s owner. The nodes of the used chunks are lazily

reclaimed and removed by the list’s owner. For brevity, we omit the linked list manipulation

functions from the pseudo-code bellow. Our single-writer lists can be implemented without syn-

chronization primitives, similarly to the single-writer linked-list in [57]. In addition to holding the

chunk, a node keeps the index of the latest taken task in that chunk, this index is then used for

chunk stealing as we show in Section 7.3.3.

Safe memory reclamation is provided by using hazard pointers [57] both for nodes and for

chunks. The free (reclaimed) chunks in SALSA are kept at per-consumer chunkPools implemented

by lock-free Michael-Scott queues [58]. As we show in Section 7.3.4, the chunk pools serve two

purposes: 1) efficient memory reuse and 2) producer-based load balancing.

89



idx=2 idx=‐1idx=4prod0

TAKEN
TAKEN

Task
Taskidx=0

prod1

prod2

prod3kL
is
ts

owner=c1 owner=c1

0
1

0
1 TAKEN

TAKEN
Task
Task

Task
┴
┴
┴owner=c1

TAKEN

idx=0prod3

prod4

prod5

ch
un

k 1
2
3
4

1
2
3
4

0

Task
Task
┴
┴

steal 1
2
3
4

Figure 7.2: Chunk lists in SALSA single consumer pool implementation. Tasks are kept in
chunks, which are organized in per-producer lists; an additional list is reserved for stealing. Each
list can be modified by the corresponding producer only. The only process that is allowed to
retrieve tasks from a chunk is the owner of that chunk (defined by the ownership flag). A Node’s
index corresponds to the latest task taken from the chunk or the task that is about to be taken by
the current chunk owner.

7.3.2 Basic Algorithm

SALSA producer

The description of SALSA producer functions is presented in Algorithm 12. The insertion of a

new task consists of two stages: 1) finding a chunk for task insertion (if necessary), and 2) adding

a task to the chunk.

Finding a chunk The chunk for task insertions is kept in the local producer variable chunk

(line 39 in Algorithm 12). Once a producer starts working with a chunk c, it continues inserting

tasks to c until c is full – the producer is oblivious to chunk stealing. If the chunk’s value is⊥, then

the producer should start a new chunk (function getChunk). In this case, it tries to retrieve a chunk

from the chunk pool and to append it to the appropriate chunk list. If the chunk pool is empty

then the producer either returns ⊥ (if force=false), or allocates a new chunk by itself (otherwise)
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Algorithm 12 SALSA implementation of SCPool: Producer Functions.

37: Producer local variables:
38: int producerId
39: Chunk chunk; initially ⊥ B the chunk to insert to
40: int prodIdx; initially 0 B the prefix of inserted tasks

41: Function produce(Task t):
42: return insert(t, this, false)

43: Function insert(Task t, SCPool scPool, bool force):
44: if (chunk = ⊥) then B allocate new chunk
45: if (getChunk(scPool, force) = false) then return false
46: chunk.tasks[prodIdx]← t; prodIdx++
47: if(prodIdx = CHUNK SIZE) then
48: chunk← ⊥ B the chunk is full
49: return true

50: Function produceForce(Task t):
51: insert(t, this, true)

52: Function getChunk(SALSA scPool, bool force)
53: newChunk← dequeue chunk from scPool.chunkPool
54: if (chunk = ⊥) B no available chunks in this pool
55: if (force = false) then return false
56: newChunk← allocate a new chunk
57: newChunk.owner← scPool.consumerId
58: node← new node with idx = −1 and c = newChunk
59: scPool.chunkLists[producerId].append(node)
60: chunk← newChunk; prodIdx← 0
61: return true

(lines 54–56).

Inserting a task to the chunk As previously described in Section 7.3.1, different producers

insert tasks to different chunks, which removes the need for synchronization among producers.

The producer local variable prodIdx indicates the next free slot in the chunk. All that is left for the

insertion function to do, is to put a task in that slot and to increment prodIdx (line 46). Once the

index reaches the maximal value, the chunk variable is set to ⊥, indicating that the next insertion

operation should start a new chunk.
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SALSA consumer without stealing

Algorithm 13 SALSA implementation of SCPool: Consumer Functions.

62: Function consume():
63: if (currentNode 6= ⊥) then B common case
64: t← takeTask(currentNode)
65: if (t 6= ⊥) then return t
66: foreach Node n in ChunkLists do: B fair traversal of chunkLists
67: if (n.c 6= ⊥ ∧ n.c.owner = consumerId) then
68: t← takeTask(n)
69: if (t 6= ⊥) then currentNode← n; return t
70: currentNode← ⊥; return ⊥

71: Function takeTask(Node n):
72: chunk← n.c
73: if (chunk = ⊥) then return ⊥ B this chunk has been stolen
74: task← chunk.tasks[n.idx + 1]
75: if (task = ⊥) then return ⊥ B no inserted tasks
76: if (chunk.owner 6= consumerId)
77: return ⊥
78: n.idx++ B tell the world you’re going to take a task from idx
79: if (chunk.owner = consumerId) then B common case
80: chunk.tasks[n.idx]← TAKEN
81: checkLast(n)
82: return task

B the chunk has been stolen, CAS the last task and go away
83: success← (task 6= TAKEN ∧

CAS(chunk.tasks[n.idx], task, TAKEN))
84: if(success) then checkLast(n)
85: currentNode← ⊥
86: return (success) ? task : ⊥

87: Function checkLast(Node n):
88: if(n.idx + 1 = CHUNK SIZE) then B finished the chunk
89: n.c← ⊥; return chunk to chunkPool
90: currentNode← ⊥

The consumer’s algorithm without stealing is given in the Algorithm 13. The consumer first

finds a nonempty chunk it owns and then invokes takeTask() to retrieve a task.

Unlike producers, which have exclusive access to insertions in a given chunk, a consumer must

take into account the possibility of stealing. Therefore, it should notify other processes which task
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it is about to take.

To this end, each node in the chunk list keeps an index of the taken prefix of its chunk in the

idx variable, which is initiated to −1. A consumer that wants to take a task T , first increments the

index, then checks the chunk’s ownership, and finally changes the chunk entry from T to TAKEN

(lines 78–80). By doing so, a consumer guarantees that idx always points to the last taken task or to

a task that is about to be taken. Hence, a process that is stealing a chunk from a node with idx = i

can assume that the tasks in the range [0 . . . i) have already been taken. The logic for dealing with

stolen chunks is described in the next section.

7.3.3 Stealing

The stealing algorithm is given in the function steal() in Algorithm 14. We refer to the stealing

consumer as cs, the victim process whose chunk is being stolen as cv, and the stolen chunk as C.

The idea is to turn cs to be the exclusive owner of C, so that cs will be able to take tasks from

the chunk without synchronization. In order to do that, cs first adds the chunk to its list (line 97),

then changes the ownership of C from cv to cs using CAS (line 98), and then removes the chunk

from cv’s list (line 114). Once cv notices the change in the ownership it can take at most one more

task from C (lines 83–86) after failing the second check of ownership in line 79 having passed the

one in line 76.

When the steal() operation of cs occurs simultaneously with the takeTask() operation of cv,

both cs and cv might try to retrieve the same task. We now explain why this might happen. Recall

that cv notifies potential stealers of the task it is about to take by incrementing the idx value in C’s

node (line 78). This value is copied by cs in line 111 when creating a copy of C’s node for its steal

list.

Consider, for example, a scenario in which the idx is incremented by cv from 10 to 11. If

cv checks C’s ownership before it is changed by cs, then cv takes the task at index 11 without

synchronization (line 80). Therefore, cs cannot be allowed to take the task pointed by idx at all.

Hence, cv has to take the task at index 11 even if it does observe the ownership change. After

stealing the chunk, cs will eventually try to take the task pointed by idx+ 1. However, if cs copies

the node before idx is incremented by cv, cs might think that the value of idx + 1 is 11. In this

case, both cs and cv will try to retrieve the task at index 11. To ensure that the task is not retrieved
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Algorithm 14 SALSA implementation of SCPool: the stealing function.

91: Function steal(SCPool p):
92: prevNode← a node holding tasks, whose owner is p, from some list in p’s pool B different

policies possible
93: if (prevNode = ⊥) return ⊥ B No Chunk found
94: c← prevNode.c; if (c = ⊥) then return ⊥
95: prevIdx← prevNode.idx
96: if (prevIdx+1 = CHUNK SIZE ∨ c.tasks[prevIdx+1] = ⊥) return ⊥

B make it stealable from my list
97: chunkLists[steal].append(prevNode)
98: if (CAS(c.owner, p.consumerId, consumerId) = false)
99: chunkLists[steal].remove(prevNode)

100: return ⊥ B failed to steal

101: idx← prevNode.idx
102: if (idx+1 = CHUNK SIZE) B Chunk is empty
103: chunkLists[steal].remove(prevNode)
104: return ⊥
105: task← c.tasks[idx+1]
106: if (task 6= ⊥) B Found task to take
107: if (c.owner 6= consumerId ∧ idx 6= prevIdx)
108: chunkLists[steal].remove(prevNode)
109: return ⊥
110: idx++
111: newNode← copy of prevNode
112: newNode.idx = idx
113: replace prevNode with newNode in chunkLists[steal]
114: prevNode.c← ⊥ B remove chunk from consumer’s list

B done stealing the chunk, take one task from it
115: if (task = ⊥) then return ⊥ B still no task at idx
116: if (task = TAKEN ∨ !CAS(c.tasks[idx], task, TAKEN)) then
117: task← ⊥
118: checkLast(newNode)
119: if (c.owner = consumerId) currentNode← newNode
120: return task

twice, both functions invoke CAS in order to retrieve this task (line 116 for cs, line 83 for cv).

The above schematic algorithm works correctly as long as the stealing consumer can observe

the node with the updated index value. This might not be the case in case the same chunk is

concurrently stolen by another consumer, rendering the idx of the original node obsolete. In order

to prevent this situation, stealing a chunk from the pool of consumer cv is allowed only if cv is the
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owner of this chunk (line 98). This approach is prone to the ABA problem: consider a scenario

where consumer ca is trying to steal from cb, but before the execution of the CAS in line 98, the

chunk is stolen by cc and then stolen back by cb. In this case, ca’s CAS succeeds but ca has an old

value of idx. To prevent this ABA problem, the owner field contains a tag, which is incremented

on every CAS operation. For brevity, tags are omitted from the pseudo-code.

A naı̈ve way for cs to steal the chunk from cv would be first to change the ownership and then

to move the chunk to the steal list. However, this approach may cause the chunk to disappear when

cs stalls, because the chunk is not yet accessible via the lists of cs and yet cs is its owner. Therefore,

SALSA first adds the original node to the steal list of cs, then changes the ownership, and only then

replaces the original node with a new one (lines 97–114).

Another issue we need to address is making sure that the idx value in nodes pointing to a given

chunk increases monotonically. To this end, we make sure that when cs creates a new node, this

node’s idx is greater than or equal to the idx of cv’s node. As noted before, cv may increase the idx

at most once after its chunk is stolen. Also, thanks to the ownerships checks that are done after the

task was read and before the idx is incremented, we know that the idx field of cv increases only

if there is a task in the next slot after the ownership change. To ensure that idx does not decrease

in this case, cs sets the idx of the new node to be the idx of cv plus one if the next task is not ⊥
(line 110).

7.3.4 Chunk Pools

As described in Section 7.3.1, each consumer keeps a pool of free chunks. When a producer needs

a new chunk for adding a task to consumer ci, it tries to get a chunk from ci’s chunk pool – if no

free chunks are available, the produce() operation fails.

As described in Section 7.2, our system-wide policy defines that if an insertion operation fails,

then the producer tries to insert a task to other pools. Thus, the producer avoids adding tasks to

overloaded consumers, which in turn decreases the amount of costly steal operations. We further

refer to this technique as producer-based balancing.

Another SALSA property is that a chunk is returned to the pool of a consumer that retrieves the

latest task of this chunk. Therefore, the size of the chunk pool of consumer ci is proportional to the

rate of ci’s task consumption. This property is especially appealing for heterogeneous systems – a
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faster consumer ci, (e.g., one running on a stronger or less loaded core), will have a larger chunk

pool, and so more produce() operations will insert tasks to ci, automatically balancing the overall

system load.

7.4 Implementation and Evaluation

In this section we evaluate the performance of our work-stealing framework built on SALSA

pools. We first present the implementation details on dealing with memory reordering issues in

Section 7.4.1. The experiment setup is described in Section 7.4.2, we show the overall system

performance in Section 7.4.3, study the influence of various SALSA techniques in Section 7.4.4

and check the impact of memory placement and thread scheduling in Section 7.4.5.

7.4.1 Dealing with Memory Reordering

The presentation of the SALSA algorithm in Section 7.3 assumes sequential consistency [55] as

the memory model. However, most existing systems relax sequential consistency to achieve better

performance. Specifically, according to x86-TSO [72], memory loads can be reordered with re-

spect to older stores to different locations. As shown by Attiya et al. [7], it is impossible to avoid

both RAW and AWAR in work stealing structures, which requires using a synchronization opera-

tion, such as a fence or CAS, to ensure correctness. In SALSA, this reordering can cause an index

increment to occur after the ownership validation (lines 78, 79 in Algorithm 13), which violates

correctness as it may cause the same task to be taken twice, by both the original consumer and the

stealing thread.

The conventional way to ensure a correct execution in such cases is to use memory fences to

force a specific memory ordering. For example, adding an mfence instruction between lines 78

and 79 guarantees SALSA’s correctness. However, memory fences are costly and their use in the

common path degrades performance. Therefore, we prefer to employ a synchronization technique

that does not add substantial overhead to the frequently used takeTask() operation. One exam-

ple for such a technique is location-based memory fences, recently proposed by Ladan-Mozes et

al. [54], which is unfortunately not implemented in current hardware.

In our implementation, we adopt the synchronization technique described by Dice et al. [26],
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where the slow thread (namely, the stealer) binds directly to the processor on which the fast thread

(namely, the consumer) is currently running, preempting it from the processor, and then returns

to run on its own processor. Thread displacement serves as a full memory fence, hence, a stealer

that invokes the displacement binding right after updating the ownership (before line 101 in Algo-

rithm 13) observes the updated consumer’s index. On the other hand, the steal-free fast path is not

affected by this change.

7.4.2 Experiment Setup

We compare the following task pool implementations:

• SALSA – our work-stealing framework with SCPools implemented by SALSA.

• SALSA+CAS – our work-stealing framework with SCPools implemented by a simplistic

SALSA variation, in which every consume() and steal() operation tries to take a single task

using CAS. In essence, SALSA+CAS removes the effects of SALSA’s low-synchronization

fast-path and per-chunk stealing. Note that disabling per-chunk stealing in SALSA annuls

the idea of chunk ownership, hence, disables its low-synchronization fast-path as well.

• ConcBag – an algorithm similar to the lock-free Concurrent Bags algorithm [74]. It is worth

noting that the original algorithm was optimized for the scenario where the same process is

both a producer and a consumer (in essence producing tasks to itself), which we do not con-

sider in this work; in our system no thread acts as both a producer and a consumer, therefore

every consume operation steals a task from some producer. We did not have access to the

original code, and therefore reimplemented the algorithm in our framework. Our implemen-

tation is faithful to the algorithm in the paper, except in using a simpler and faster underlined

linked list algorithm. All engineering decisions were made to maximize performance.

• WS-MSQ – our work-stealing framework with SCPools implemented by Michael-Scott non-

blocking queue [58]. Both consume() and steal() operations invoke the dequeue() function.

• WS-LIFO – our work-stealing framework with SCPool implemented by Michael’s LIFO

stack [57].
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We did not experiment with additional FIFO and LIFO queue implementations, because, as

shown in [74], their performance is of the same order of magnitude as the Michael-Scott queue.

Similarly, we did not evaluate CAFÉ [14] pools because their performance is similar to that of

WS-MSQ [12], or ED-Pools [3], which have been shown to scale poorly in multi-processor archi-

tectures [12, 74].

All the pools are implemented in C++ and compiled with -O2 optimization level. In order

to minimize scalability issues related to allocations, we use jemalloc allocator, which has

been shown to be highly scalable in multi-threaded environments [2]. Chunks of SALSA and

SALSA+CAS contain 1000 tasks, and chunks of ConcBag contain 128 tasks, which were the re-

spective optimal values for each algorithm.

We use a synthetic benchmark where 1) each producer works in a loop of inserting dummy

items; 2) each consumer works in a loop of retrieving dummy items. Each data point shown is

an average of 5 runs, each with a duration of 20 seconds. The tests are run on a dedicated shared

memory NUMA server with 8 Quad Core AMD 2.3GHz processors and 16GB of memory attached

to each processor.

7.4.3 System Throughput

Figure 7.3(a) shows system throughput for workloads with equal number of producers and con-

sumers. SALSA scales linearly as the number of threads grows to 32 (the number of physical cores

in the system), and it clearly outperforms all other competitors. In the 16/16 workload, SALSA is

×20 faster than WS-MSQ and WS-LIFO, and more than ×3.5 faster than Concurrent Bags.

We note that the performance trend of ConcBags in our measurements differs from the results

presented by Sundell et al. [74]. While in the original paper, their throughput drops by a factor of

3 when the number of threads increases from 4 to 24, in our tests, the performance of ConcBags

increases with the number of threads. The reasons for the better scalability of our implementation

can be related to the use of different memory allocators, hardware architectures, and engineering

optimizations.

All systems implemented by our work-stealing framework scale linearly because of the low

contention between consumers. Their performance differences are therefore due to the efficiency

of the consume() operation – for example, SALSA is ×1.7 faster than SALSA+CAS thanks to its
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(a) System throughput – N producers, N consumers.
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(b) System throughput – variable producers-consumers
ratio.

Figure 7.3: System throughput for various ratios of producers and consumers. SALSA scales
linearly with the number of threads – in the 16/16 workload, it is ×20 faster than WS-MSQ and
WS-LIFO, and ×3.5 faster than Concurrent Bags. In tests with equal numbers of producers and
consumers, the differences among work-stealing alternatives are mainly explained by the consume
operation efficiency, since stealing rate is low and hardly influences performance.

fast-path consumption technique. In contrast, in ConcBags, which is not based on per-consumer

pools, every consume() operation implies stealing, which causes contention among consumers,

leading to sub-linear scalability. The stealing policy of ConcBags algorithm plays an important

role. The stealing policy described in the original paper [74] proposes to iterate over the lists using

round robin. We found out that the approach in which each stealer initiates stealing attempts from

the predefined consumer improves ConcBags’ results by 53% in a balanced workload.

Figure 7.3(b) shows system throughput of the algorithms for various ratios of producers and

consumers. SALSA outperforms other alternatives in all scenarios, achieving its maximal through-

put with equal number of producers and consumers, because neither of them is a system bottleneck.

We next evaluate the behavior of the pools in scenarios with a single producer and multiple

consumers. Figure 7.4(a) shows that the performance of both SALSA and SALSA+CAS does not

drop as more consumers are added, while the throughput of other algorithms degrades by the factor

of 10. The degradation can be explained by high contention among stealing consumers, as evident

from Figure 7.4(b), which shows the average number of CAS operations per task transfer.
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(b) CAS operations per task retrieval – 1 Producer, N con-
sumers.

Figure 7.4: System behavior in workloads with a single producer and multiple consumers. Both SALSA and
SALSA+CAS efficiency balance the load in this scenario. The throughput of other algorithms drops by a factor of 10
due to increased contention among consumers trying to steal tasks from the same pool.

7.4.4 Evaluating SALSA techniques
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Figure 7.5: System throughput – 1 Producer, N consumers. Producer-based balancing contributes
to the robustness of the framework by reducing stealing. With no balancing, chunk-based stealing
becomes important.

In this section we study the influence of two of the techniques used in SALSA: 1) chunk-

based-stealing with a low-synchronization fast path (Section 7.3.3), and 2) producer-based balanc-

ing (Section 7.3.4). To this end, we compare SALSA and SALSA+CAS both with and without

producer-based balancing (in the latter a producer always inserts tasks to the same consumer’s
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pool).

Figure 7.5 depicts the behavior of the four alternatives in single producer / multiple consumers

workloads. We see that producer-based balancing is instrumental in redistributing the load: neither

SALSA nor SALSA+CAS suffers any degradation as the load increases. When producer-based

balancing is disabled, stealing becomes prevalent, and hence the stealing granularity becomes more

important: SALSA’s chunk based stealing clearly outperforms the naı̈ve task-based approach of

SALSA+CAS.

7.4.5 Impact of Scheduling and Allocation
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Figure 7.6: Impact of scheduling and allocation (equal number of producers and consumers). Per-
formance decreases once the interconnect becomes saturated.

We now evaluate the impact of scheduling and allocation in our NUMA system. To this end,

we compare the following three alternatives: 1) the original SALSA algorithm; 2) SALSA with

no affinity enforcement for the threads s.t. producers do not necessarily work with the closest

consumers; 3) SALSA with all the memory pools preallocated on a single NUMA node.

Figure 7.6 depicts the behavior of all the variants in the balanced workload. The performance

of SALSA with no predefined affinities is almost identical to the performance of the standard

SALSA, while the central allocation alternative looses its scalability after 12 threads.

The main reason for performance degradation in NUMA systems is bandwidth saturation of the

interconnect. If all chunks are placed on a single node, every remote memory access is transfered

via the interconnect of that node, which causes severe performance degradation. In case of random
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affinities, remote memory accesses are distributed among different memory nodes, hence their rate

remains below the maximum available bandwidth of each individual channel, and the program

does not reach the scalability limit.
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Chapter 8

Conclusions

This thesis dealt with exploiting parallelism of multi-core architectures, and the main topics of our

research were efficient synchronization and data exchange among threads.

We studied the theoretical properties of TMs avoiding unnecessary aborts, by investigating

what kinds of aborts can or cannot be eliminated, and what kinds of aborts can or cannot be avoided

efficiently. We have shown that some unnecessary aborts cannot be avoided, and that there is an

inherent tradeoff between the overhead of a TM and the extent to which it reduces the number of

spurious aborts: while strict online opacity-permissiveness is NP-hard, we presented a polynomial

time algorithm AbortsAvoider, satisfying the weaker online opacity-permissiveness property.

An effective way to reduce the number of aborts in transactional memory is keeping multiple

versions of transactional objects. Hence, we studied the inherent properties of STMs that use mul-

tiple versions to guarantee successful commits of all read-only transactions (we call such STMs

MV-permissive). We presented the challenge of efficient garbage collection of old object ver-

sions by demonstrating that the memory consumption of algorithms keeping a constant number

of versions for each object can grow exponentially. We then showed that no responsive MV-

permissive STM can be optimal in the number of previous versions kept and that no responsive

MV-permissive STM can be disjoint-access parallel. We defined an achievable garbage collection

property, useless-prefix GC, and showed that in a responsive MV-permissive STM satisfying UP

GC, even read-only transactions must make lasting changes to the system state.

Theoretical study of multi-versioning in STM is far from being complete. While we showed

that no MV-permissive STM can be online space optimal, it would be interesting to consider
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whether there exist approximately optimal STMs. There are clear tradeoffs between the quality of

garbage collection, permissiveness and the computational complexity of transactional operations:

we believe that understanding these tradeoffs may be valuable to improving the performance and

utility of transactional memory.

We referred to practical implications of multi-versioning by developing SMV, a multi-versioned

STM that achieves high performance (high throughput, low and predictable latency, and little

wasted work) in the presence of read-only transactions. Despite keeping multiple versions, SMV

can work well in memory constrained environments. It keeps old object versions as long as they

might be useful while still allowing read-only transactions to remain invisible by relying on auto-

matic garbage collection to dispose of obsolete versions. SMV demonstrated up to ×7 throughput

improvement over a single-version STM and more than a two-fold improvement over an STM

keeping a constant number of versions per object.

More generally, SMV presents the idea of keeping needed data in memory by causing potential

users to keep references for preventing garbage collection. This idea is especially appealing be-

cause it delegates disposal responsibilities to the independent GC module that is being developed

and upgraded by a very large community. We think that this approach can be the key to achieving

good performance not only in STMs, but also in a range of concurrent data structures.

The second area of this thesis was the efficient data exchange among threads, where we pre-

sented a highly-scalable task pool framework. Our framework has employed a number of novel

techniques for improving performance: 1) lightweight and synchronization-free produce and con-

sume operations in the common case; 2) NUMA-aware memory management, which keeps most

data accesses inside NUMA nodes; 3) a chunk-based stealing approach that decreases the stealing

cost and suits NUMA migration schemes; and 4) elegant producer-based balancing for decreasing

the likelihood of stealing.

The presented task pool scales linearly with the number of threads: it outperforms other work-

stealing techniques by a factor of 20, and the state-of-the art non-FIFO pools by a factor of 3.5.

We have further shown that it is highly robust to imbalances and unexpected thread stalls.

Our general approach of partitioning data structures among threads, along with chunk-based

migration and an efficient synchronization-free fast-path, can be of benefit in building additional

scalable high-performance services in the future.
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 במכונות מרובות ליבות שיכולות להריץ כמה אפליקציות בו זמנית, ההתנהגות של הסביבה
 יכולה להיות לא צפויה. העצירות הלא צפויות של החוטים עלולות לגרום לעומס לא מאוזן על
 הצרכנים, וזה עלול לגרום לקצב גבוה של הגניבות שיוריד את התקורה. אנחנו מממשים
 מדיניות אלגנטית ומשפרת עצמה עבור הכנסת המשימות, כך שהמשימות לא נדחפות בכוח

 עם עומס יתר, ובכך אנחנו מורידים את ההסתברות של הגניבות. SALSAלמאגרי 

מומשה ב-SALSAמערכת   C והביצועים שלה נבדקו במכונת ++NUMA עם ליבות.32    
  סקלבילי באופן לינארי עםSALSAהבדיקות שלנו מראות שמאגר היצרנים-צרכנים מבוסס 

יותר מהר מהאלטרנטיבות של 20כמות החוטים: הוא עובד פי   work-stealing,האחרות  
מבוססי  מאגרים  האחרות.  העבודות  את  באופן משמעותי  מראיםSALSAוהוא משפר    

סקלביליות טובה אפילו במקרים הלא מאוזנים. 

יחד עם העברת  בין החוטים,  נתונים   יםchunkהגישה הכללית שלנו לחלוקה של מבני 
 שלמים והמסלול המהיר ללא סינכרון, יכולה להיות שימושים לבניית שירותים סקלביליים

אחרים במערכות מרובות ליבות.



 STMאנחנו מסתכלים על ההיבט הפרקטי של האבורטים המיותרים ומפתחים אלגוריתם 
Selectiveשנקרא   Multi-Versioningהאבורטים כמות  את  מוריד  שלנו  האלגוריתם   . 

ארוכות.  קוראות  לטראנזקציות  במיוחד  הישנותSMVהמיותרים,  הגרסאות  את  מוריד    
 ביעילות, יחד עם זאת הוא מאפשר לטראנזקיות הקוראות להיות בלתי נראות ע"י השימוש

  אוטומתי. בנוסף, אנחנו מראים שהשימוש בזיכרון אצל אלגוריתמיgarbage collectionב-
STM.שמתחזקים כמות קבועה של גרסאות לכל אובייקט יכול לגדול באופן אקספוננציאלי  

 ממשיך לפעול כסדרה אפילו תחת אילוצי זיכרון כבדים. SMVלעומת זאת 

  יעיל באופן יוצא מן הכלל בעומסי עבודה עם אחוז ניכר שלSMVההערכה שלנו מראה ש-
חוטים, התפוקה של 64 עם STMBench7טראנזקציות קוראות. למשל בבנצ'מרק   SMV 

מהתפוקה של 7גבוהה פי   TL2-ויותר מפי שתיים מה  TMים שמחזיקים שתי או שמונה 
קונסיסטנטיsnapshotגרסאות. בנוסף לזה, באפליקציות עם חוט מיוחד שמנסה לקחת    

  או זיכרונות עם כמות קבועה של גרסאותTL2פעם אחר פעם, זיכרונות טראנזקציוניים כמו 
אפילו עם חוט בודד שרץ ברקע. לעומתsnapshotלכל אובייקט לא יכולים לקחת את ה-   

 נשארים יציבים ללא קשר לכמות החוטים שרצים בו זמנית ברקע. SMVזאת, הביצועים של 

אנחנו משווים את דרישות הזיכרון של האלגוריתמים על ידי הגבלת את מרחב הזיכרון ב-
Java-למרות שה .STMים שמחזיקים את כמות קבועה של הגרסאות לכל אובייקט קורסים 
יורדתOutOfMemoryExceptionעם  שלה  והתפוקה  לעבוד  ממשיכה  שלנו  המערכת   , 

 אפילו תחת אילוצי זיכרון כבדים. 25%בפחות מ-

SMVמציג גישה חדשה לשמירת גרסאות מרובות, אשר מאפשרת לטראנזקציות הקוראות  
למנגנוני  ישנות  גרסאות  מחיקת  של  הסמכות  את  ומאצילה  נראות  בלתי   GCלהישאר 

.Javaהקיימים בשפות מנוהלות כמו 

 עוד אספקט חשוב של מערכות מרובות ליבות שאנחנו מסתכלים עליו זה העברת מידע
 יעילה בין החוטים. אנחנו מציגים מאגר משימות סקאלבילי עבור צרכנים-יצרנים, שבנוי עם

 ,SALSAדגש מיוחד על הסינכרון הדל והלוקליות של המידע. הגרעין של המאגר שלנו הוא 
ותומך בודד  צרכן  עבור  המאגר  את  שמממש  תקורה  ודל  סקאלבילי  סינכרון   אלגוריתם 

  משלו וגונב משימות מצרכנים אחרים עלSALSAבפעולות גניבה. כל צרכן פועל על מאגר 
פי הצורך. 

 האתגר של הגניבה הוא לבצע אותה בלי להידרדר לביצוע פעולות אטומיות חזקות (כמו
CASאו גדר זיכרון) עבור כל הוצאת משימה. אנחנו פותרים את האתגר הזה באמצעות   

גניבת  על  גניבה חדשני שמבוסס  הגניבה שלנו מאפשרchunksאלגוריתם  אלגוריתם   . 
במקרה הרגיל, כאשר אין פעולות גניבהsynchronization-freeלפעולות הצריכה להיות    

  מקטין את קצב הגניבותSALSA(אנחנו קורארים למקרה הזה המסלול המהיר). יותר מזה, 
 CASים שלמים בתוך פעולת גניבה בודדת, אשר דורשת שתי פעולות chunkעל ידי העברת 

בלבד.

 SALSAים של chunk, ה-NUMAעל מנת להשיג את הלוקליות של גישות זיכרון על מכונות 
 נשמרים בזיכרון הלוקלי של הצרכנים. מדיניות הניהול משדכת את היצרנים והצרכנים לפי

.NUMAהקירבה שלהם, מדיניות כזאת מאפשרת להעביר את רוב המשימות בתוך צמתי 



 תקציר

 בעשור האחרון היינו עדים לשינויים מהפכניים בפרדיגמות תכנותיות. בזמן שעולם החומרה
 התפתח לכיוון של הגדלת אלמנטים חישוביים וההיטרוגניות שלהם, עולם התוכנה נאלץ

 להסתגל לדרישות החדשות ולעמוד מול האתגר של סיבוכיות החומרה והמקביליות הגדלה.
 הפיתוח של תוכנות סקלביליות הפסיק להיות הגומחה של המקצוענים המעטים: אלפי

 מתכנתים "פשוטים" נדרשים לבנות אפליקציות מקביליות יעילות. המצב הזה מעלה צורך
 לפיתוח כלים חדשים שיכולים לעזור לכתיבת התוכנה בעידן ריבוי הליבות. העבודה הזאת

דנה במנגנוני סינכרוניזציה ובהחלפת מידע יעילים בין החוטים. 

החלק הראשון של התזה עוסק בבעיות התיאורטיות והמעשיות של הזיכרון הטראנזקציוני (
TMסט לארוז  לחוטים  מאפשרת  אשר  סינכרון  אבסטרקצית  הינו  טראנזקציוני  זיכרון   .( 

 פעולות על האובייקטים בזיכרון לתוך טראנזקציות. בדומה לטראנזקציות במסדי נתונים,
 טראנזקציות בזיכרון מתבצעות באפן אטומי: או שכל הפעולות של הטראנזקציה קורות בבת

עשתה  שהטראנזקציה  אומרים  כזה  (במקרה  שלcommitאחת  פעולה  שאף  או   ,( 
). abortהטראנזקציה לא מופיעה כלפי חוץ (במקרה כזה אומרים שהטראנזקציה עשתה 

 commit הקיימות היום יכולות לבטל את הטראנזקציה שהייתה יכולה לעשות TMמערכות 
 בלי להפר נכונות. אנחנו קוראים לאבורטים כאלה אבורטים מיותרים. אנחנו מתייגים איזה
 אבורטים אפשר למנוע ואיזה לא. בהמשך, אנחנו חוקרים איזה אבורטים מיותרים אפשר
 למנוע ביעילות.  בין היתר, אנחנו מראים שקיימים אבורטים מיותרים שאי אפשר למנוע

  לבין הכמות של האבורטים המיותרים. אנחנוTMאותם, ושקיים האיזון בין התקורה של ה-
  שעובד בזמן פולינומיאלי אשר מונע סוגים מסויימים של אבורטיםTMגם מציגים אלגוריתם 

מיותרים. 

היא לשמור בזיכרון טראנזקציוני  כמות האבורטים המיותרים  היעילה להקטין את   הדרך 
 גרסאות מרובות של האובייקטים הטראנזקציוניים. שימוש בגרסאות מרובות יעיל במיוחד
 עבור טראנזקציות קוראות: אם נשמור מספיק גרסאות ניתן להבטיח שכל טראנזקציה קוראת

ה- קריאת  ידי  על  בהצלחה  האובייקטיםsnapshotמסתיימת  אוסף  של  הקונסיסטנטי    
אלגוריתמי  של  האינהרנטיות  התכונות  את  חוקרים  אנחנו  זאת  לאור   TMהנקראים. 

שמשתמשים בגרסאות מרובות על מנת להבטיח סיום מוצלח של כל טראנזקציה קוראת.   

 .disjoint-access parallelקודם כל אנחנו מראים שאלגוריתמים האלה לא יכולים להיות 
  לאSTMאחר כך אנחנו מסתכלים על הבעיה של איסוף הגרסאות הישנות ומראים שאף 

יותר מכך, אנחנו מראים  יכול להיות אופטימלי במספר הגרסאות הישנות שהוא מחזיק. 
  הממומשיםSTMשהאיסוף המדוייק של הגרסאות הישנות הוא בלתי אפשרי באלגוריתמי 

 visible reads לדוגמה, שמשתמש ב-STM. אנחנו מציגים אלגוריתם invisible readsעם 
ושאוסף את הגרסאות הישנות שלא בשימוש. 

 





המחקר נעשה בהנחיית פרופ' עדית קידר מהפקולטה להנדסת חשמל.

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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